Near Mean Cordial - Path Related Graphs

L. Pandiselvi¹ A. Nellai Murugan² S. Navaneethakrishnan³

^{1,2,3}Department of Mathematics

^{1,2,3}V. O. Chidambaram College, Tuticorin-628008, Tamilnadu, India

Abstract— Let G = (V,E) be a simple graph. A Near Mean Cordial Labeling of G is a function $f: V(G) \rightarrow$ $\{1,2,3,...,p-1,p+1\}$ such that for each edge uv the induced defined $= \begin{cases} 1 & if(f(u) + f(v)) \equiv 0 \ (mod 2), \\ 0 & else \end{cases}$ and it satisfies the condition $|e_f(0) - e_f(1)| \leq 1$, where $e_f(0)$ and $e_f(1)$ represent the number of edges labeled with 0 and 1 respectively. A graph is called a Near Mean Cordial Graph if it admits a Near Mean Cordial Labeling. In this paper, It is proved that the graphs P_n , SP $(P_n, K_{1,m})$ and $B_{m,n}$ are Near Mean Cordial Graphs. AMS Mathematics subject classification 2010: 05C78.

Key words: Cordial Labeling, Mean Cordial Labeling, Near Mean Cordial Labeling and Near Mean Cordial Graphs

I. INTRODUCTION

By a graph, it means a finite undirected graph without loops or multiple edges. For graph theoretic terminology, we referred Harary[4]. For labeling of graphs, we referred Gallian[1].

A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge uv a label depending on the vertex labels of u and v.

A graph G is said to be labeled if the n vertices are distinguished from one another by symbols such as v_I , v_2, \dots, v_n . In a labeling of a particular type, the vertices are assigned distinct values from a given set, which induces distinguish edge values satisfying certain conditions. The concept of graceful labeling was introduced by Rosa[3] in 1967 and subsequently by Golomb[2]. In this paper, It is proved that P_n , $B_{m,n}$, $SP(P_n,K_{1,m})$ are Near Mean Cordial Graphs.

II. PRELIMINARIES

A. Definition 2.1:

Let G = (V,E) be a simple graph. Let $f:V(G) \rightarrow \{0,1\}$ and the induced edge label, assigning |f(u) - f(v)| is called a Cordial Labeling if the number of vertices labeled 0 and the the number of vertices labeled 1 differ by atmost 1 and also the number of edges labeled 0 and the the number of edges labeled 1 differ by atmost 1. A graph is called Cordial if it has a cordial labeling.

B. Definition 2.2

Let G = (V,E) be a simple graph. G is said to be a Mean Cordial Graph if $f:V(G) \rightarrow \{0,1,2\}$ such that for each edge uv the induced map f^* defined by $f^*(uv) = \left\lfloor \frac{f(u) + f(v)}{2} \right\rfloor$ where [x]denote the least integer which is $\leq x$ and $|e_f(0) - e_f(1)| \leq 1$ where $e_f(0)$ is the number of edges with zero label. $e_f(1)$ is the number of edges with one label.

C. Definition 2.3

Let G = (V, E) be a simple graph. A Near Mean Cordial Labeling on G is a function in f: $V(G) \rightarrow$ $\{1,2,3,...,p-1,p+1\}$ such that for each edge uv the induced map f* defined by f*(uv) = $\begin{cases} 1 & \text{if}(f(u) + f(v)) \equiv 0 \text{ (mod 2)} \\ 0 & \text{otherwise} \end{cases}$ and it satisfies the condition $|e_f(0) - e_f(1)| \le 1$. Where $e_f(0)$ and $e_f(1)$ represent the number of edges labeled with 0 and 1 respectively. A graph is called a Near Mean Cordial Graph if it admits a near mean cordial labeling.

D. Definition 2.4

If all the vertices in a walk are distinct, then it is called a path P_n and a path of length k is denoted by P_{k+1} .

E. Definition 2.5

A graph obtained from a path of lengthn -1 by attaching root of a star K_{1.m} at one end of the path. It is denoted by SP $(P_n, K_{1.m}).$

F. Definition 2.6

The BistarB_{m,n} is a graph obtained from K₂ by joining the centers of $K_{1,m}$ at one end and $K_{1,n}$ at the other end of K_2 .

III. MAIN RESULTS

A. Theorem 3.1

P_n is a Near Mean Cordial Graph.

1) Proof

Let
$$V(P_n) = \{u_i : 1 \le i \le n\}$$
.

Let E
$$(P_n) = \{(u_i u_{i+1}): 1 \le i \le n-1\}$$
.

Case (i): when n is odd

Define
$$f:V(P_n\)\rightarrow \{1,2,3,...,n{-}1,n{+}1\}$$
 by

$$f(u_1) = 1, \ f(u_{n-1}) = n+1$$

 $(u_{2i+1}) = i+1, \ 1 < i < \frac{n-1}{n-1}$

$$f(u_{2i+1}) = i+1, \quad 1 \le i \le \frac{n+1}{2}$$

$$f(u_{2i+1}) = i+1, \ 1 \le i \le \frac{n-1}{2}$$

$$f(u_{2i+1}) = i+1, \ 1 \le i \le \frac{n-1}{2}$$

$$f(u_{2i}) = \frac{n+1}{2} + i, \ 1 \le i \le \frac{n-3}{2}$$
The induced edge labeling are

$$f^*(u_i\,u_{i+1}) = \begin{cases} 1 & \text{if } f(u_i) + f(u_{i+1}) \equiv 0 \text{ (mod 2)} \\ 0 & \text{else} \end{cases} \text{, } 1 \leq i \leq n-1$$

Here.

$$e_f(0) = e_f(1) = \frac{n-1}{2}$$
.

Hence, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, $\boldsymbol{P}_{\!n}$ is a Near Mean Cordial Graph .

For example, the Near Mean Cordial Labeling of P₇ is shown in the Figure 1.

Fig. 1: Graph

Case (ii): when n is even Define $f: V(P_n) \to \{1,2,3,...,n-1,n+1\}$ by

$$f(u_1) = 1, f(u_n) = n+1$$

$$f(u_{2i+1}) = i+1, 1 \le i \le \frac{n-2}{2}$$

$$f(u_{2i}) = \frac{n}{2} + i, \quad 1 \le i \le \frac{n-2}{2}$$
 The induced edge labeling are

The induced edge labeling are
$$f^*(u_i\,u_{i+1}) = \begin{cases} 1 & \text{if } f(u_i) + f(u_{i+1}) \equiv 0 \; (\text{mod } 2) \\ 0 & \text{else} \end{cases} , \; 1 \leq i \leq n-1$$

c) Sub case(i): when $n \equiv 0 \pmod{4}$ Here, $e_f(0) = \frac{n}{2}$ and $e_f(1) = \frac{n}{2} - 1$.

Here,
$$e_f(0) = \frac{n}{2}$$
 and $e_f(1) = \frac{n}{2} - 1$.

Hence, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, P_n is a Near Mean Cordial Graph.

For example, the Near Mean Cordial Labeling of P₈ is shown in the Figure 2

d) Sub case(ii): when $n \equiv 2 \pmod{4}$

Here,
$$e_f(0) = \frac{n}{2} - 1$$
 and $e_f(1) = \frac{n}{2}$.

Hence, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, P_n is a Near Mean Cordial Graph.

For example, the Near Mean Cordial Labeling of P₆ is shown in the Figure 3.

Fig. 3: Graph

B. Theorem 3.2

 $SP(P_n, K_{1m})$ is a Near Mean Cordial Graph.

1) Proof:

Let $V(SP(P_n, K_{1,m})) = \{u_i: 1 \le i \le n, v_i: 1 \le i \le m\}.$

Let
$$E (SP(P_n, K_{1,m})) = \{(u_i u_{i+1}) : 1 \le i \le n-1\} \cup \{(u_n v_i) : 1 \le i \le m\}.$$

Case (i): when n is even

Define
$$f: V(SP(P_n, K_{1,m})) \to \{1,2,3,...,m+n-1,m+n+1\}$$
 by

$$f(u_{2i-1}) = i, \quad 1 \le i \le \frac{1}{2}$$

 $f(u_n) = m+n+1$

$$\begin{split} f(u_{2i-1}) &= i, \quad 1 \leq i \leq \frac{n}{2} \\ f(u_n) &= m{+}n{+}1 \\ f(u_{2i}) &= (m+1) + \frac{n}{2} + (i-1) \;\;, \; 1 \leq i \leq \frac{n}{2} - 1 \\ f(v_i) &= \quad \frac{n}{2} + i \;, \; \; 1 \leq i \leq m \end{split}$$

Case (ii): when n is odd b)

Define
$$f: V(SP(P_n, K_{1,m})) \to \{1,2,3,...,m+n-1,m+n+1\}$$
 by

$$f(u_{2i-1}) = i, \quad 1 \le i \le \frac{n+1}{2}$$

$$f(u_{n-1}) = m+n+1$$

$$f(u_{2i}) = (m+1) + \frac{n+1}{2} + (i-1), \ 1 \le i \le \frac{n-3}{2}$$

$$f(v_i) = \frac{n+1}{2} + i \ , \ 1 \le i \le m$$

$$f(v_i) = \frac{n+1}{2} + i, \ 1 \le i \le m$$

The induced edge labelings are

$$f^*(u_i\,u_{i+1}) = \left\{ \begin{array}{l} 1 \quad \text{if } f(u_i) + f(u_{i+1}) \equiv 0 \; (\text{mod } 2) \\ 0 \quad \text{else} \end{array} \right., \; 1 \leq i \leq n$$

$$f^*(u_n\,v_i) = \left\{ \begin{array}{l} 1 \quad \text{if } f(u_n) + f(v_i) \equiv 0 \; (\text{mod } 2) \\ 0 \quad \text{else} \end{array} \right., \; 1 \leq i \leq m$$
 When n is even and m is odd

$$f^*(u_n v_i) = \begin{cases} 1 & \text{if } f(u_n) + f(v_i) \equiv 0 \pmod{2} \\ 0 & \text{else} \end{cases}$$
, $1 \le i \le m$

Here,
$$e_f(0) = e_f(1) = \frac{m+n-1}{2}$$

Hence, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

When n is odd and m is odd

Here,
$$e_f(0) = \frac{m+n}{2}$$
 and $e_f(1) = \frac{m+n}{2} - 1$.

Hence, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, $SP(P_n, K_{1,m})$ is a Near Mean Cordial Graph.

For example, the Near Mean Cordial Labeling of $SP(P_6,K_{1.3})$ and $SP(P_5,K_{1.5})$ is shown in Figures 4 and 5.

Fig. 4: Graph

Fig. 5: Graph

When n is even and m is even

When $n \equiv 0 \pmod{4}$

Here,

$$e_f(0) = \frac{m+n}{2}$$
 and $e_f(1) = \frac{m+n}{2} - 1$.

When $n \equiv 2 \pmod{4}$

Here,

$$e_f(1) = \frac{m+n}{2}$$
 and $e_f(0) = \frac{m+n}{2} - 1$.

 $e_f(1)=\!\!\frac{m+n}{2} \text{and} \ e_f(0)=\!\!\frac{m+n}{2}-1.$ Hence, it satisfies the condition $|e_f(0)-e_f(1)|\!\!\leq 1.$

When n is odd and m is even

Here,

$$e_f(0) = e_f(1) = \frac{m+n-1}{2}$$

Hence, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, $SP(P_n, K_{1,m})$ is a Near Mean Cordial Graph.

For example, the Near Mean Cordial Labeling of $SP(P_4,K_{1,4})$, $SP(P_5,K_{1,6})$ and $SP(P_2,K_{1,4})$ is shown in Figures

Fig. 6: Graph

C. Theorem 3.3

B_{m,n} is a Near Mean Cordial Graph.

1) Proof

$$\begin{array}{ll} \text{Let } V(B_{m,n}) &= \{u,v\,,(u_i\colon 1\leq i\leq m),(v_i\colon 1\leq i\leq n)\}.\\ \text{Let } E\ (B_{m,n}) &= \ \{\{uv\}\cup \{(uu_i)\colon\ 1\leq i\leq m\}\cup \{(vv_i)\colon 1\leq i\leq n\}\}\,. \end{array}$$

Case (i): when m = n

Define
$$f: V(B_{m,n}) \rightarrow \{1,2,3,...,m+n+1,m+n+3\}$$
 by
$$f(u) = 2m+1, \ f(v) = 2n+3$$

$$f(u_i) = 2i-1, \ 1 \leq i \leq m$$

$$f(v_i) = 2i, \ 1 \leq i \leq n$$

The induced edge labeling are

$$\begin{split} f^*(uv) &= 1 \\ f^*(uu_i) &= 1 \text{ , } 1 \leq i \leq m \\ f^*(vv_i) &= 0 \text{ , } 1 \leq i \leq n \end{split}$$

Here

$$e_f(0) = \frac{m+n}{2}$$
 and $e_f(1) = \frac{m+n}{2} + 1$.

Hence, it satisfies the condition $|e_f(0) - e_f(1)| \le 1$.

Hence, B_{m.n} is a Near Mean Cordial Graph.

For example, the Near Mean Cordial Labeling of $B_{4.4}$ is shown in the Figure 7.

Fig. 7: Graph

b) Case (ii): when m < n

Define
$$f: V(B_{m,n}) \rightarrow \{1,2,3,...,m+n+1,m+n+3\}$$
 by
$$f(u) = m+n+1, \ f(v) = m+n+3$$

$$f(u_i) = 2i-1, \qquad 1 \leq i \leq m$$

$$f(v_i) = 2i, \qquad 1 \leq i \leq m$$

$$f(v_i) = m+i, \quad m+1 \le i \le n$$

c) sub case(i): when m is odd,nis odd and when m is even ,nis even

The induced edge labelings are

$$f^*(uv) = 1 \\ f^*(\ uu_i) = 1 \ , \ 1 \leq i \leq m \\ f^*(\ vv_i) = 0 \ , \ 1 \leq i \leq m \\ f^*(v \ v_i) = \left\{ \begin{array}{c} 1 \ \text{if} \ f(v) + f(v_i) \equiv 0 \ (\text{mod} \ 2) \\ 0 \ \text{else} \\ 1 \leq i \leq n \end{array} \right. , \ m +$$

Here,

$$e_f(0) = \frac{m+n}{2}$$
 and $e_f(1) = \frac{m+n}{2} + 1$.

d) sub case(ii): when m is odd, nis even and when m is even ,nis odd

The induced edge labelings are

$$f^*(uv) = 1$$

$$f^*(uu_i) = 0 , \ 1 \le i \le m$$

$$f^*(vv_i) = 1 , \ 1 \le i \le m$$

$$f^*(v) + f(v_i) = 0 \ (\text{mod } 2)$$

$$0 \quad else$$

$$1 \le i \le n$$

Here

$$e_f(0) = \frac{m+n+1}{2} = e_f(1).$$

Hence, In all the cases it satisfies the condition $|e_f(0) - \, e_f(1)| \! \leq 1.$

Hence, $\,B_{m,n}\,$ is a Near Mean Cordial Graph .

For example, the Near Mean Cordial Labeling of $B_{3,5}$, $B_{2,6}$, $B_{5,8}\,$ and $B_{6,7}$ are shown in Figures 8.

Fig. 8: Graph

REFERENCES

- [1] G.J. Gallian, A Dynamic survey of graph labeling, The electronic journal of combinotorics, 16 (2009), #DS6.
- [2] S.W Golomb, How to number a graph in graph Theory and computing, R.C. Read, ed., Academic Press, New York (1972), 23-37.
- [3] A. Rosa, On certain valuations of the vertices of a graph, Theory of graphs (International Symposium, Rome), July (1966).
- [4] R. Sridevi, S. Navaneethakrishnan, Some New Graph Labeling Problems and Related Topics(thesis) jan 2013.
- [5] Frank Harary, Graph Theory, Narosa publishing house pvt. Ltd., 10th reprint 2001.
- [6] A. NellaiMurugan, and G. Esther, Some Results On Mean Cordial Graphs International journal of Mathematics Trends and Technology- volume11 No.2-Jul 2014.

