
IJSRD - International Journal for Scientific Research & Development| Vol. 4, Issue 02, 2016 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 228

Generating Better Initial Centroids Over Hadoop for K-Means

Clustering
Vineesh Cutting1 Prateek Singh2

1M.Tech Scholar 2Assistant Professor
1,2Department of Computer Science & Engineering

1,2SHIATS, Allahabad
Abstract— Clustering is one of the traditional data mining

technique used for grouping of various kinds of data to

perform better analyses. K-Means being most desirable

Algorithm for clustering. With the advancement in

Technology, the data at many domains is generated at higher

rates reaching size greater than Petabyte. Harnessing

Hadoop and K-Means resulted in faster processing of large

data set. However, random initial centroids have to be

provided in traditional K-Means algorithm. The

Convergence to be reach highly depends on the set of initial

centroids. This paper represents an efficient and simplified

technique for generating set of better initial centroids as an

input to K-Means Clustering over Hadoop. The

experimental result shows better performance in clustering

compared to random initial centroids.

Key words: Data Mining, K-Means clustering, Random

initial centroids, Better initial centroids, Hadoop,

MapReduce

I. INTRODUCTION

The Clustering is the process of organizing objects into

different groups called as clusters. Each object belonging to

certain group share some common properties in accordance

to the other objects present in similar group.

The result of cluster analysis is the group of objects

such that objects in group are similar to each other and

dissimilar to the objects belonging to other group.

For this, clustering, unsupervised machine learning

technique is used. Numerous methods have been proposed

to solve clustering problem [1], [2]. Mac Queen in 1967

gave K-Means Clustering technique that became very

famous due to its simplicity and came to use in various

domains.

K-Means technique takes set of initial centroids to

start clustering of n objects into k mutually excessive

groups. Distance of each object to its centroid is minimized

in each iteration.

However, the technology advancement in computer

hardware technology, powerful computers, storage media,

and data collection equipments has provided a tremendous

growth in the volume of the text documents. With the

increase in the number of electronic documents, it is hard to

organize, analyse and present these documents efficiently by

putting manual effort [3]. These have brought challenges for

the effective and efficient organization of text documents

automatically [4].

Increase in volume and variety of data gave rise to

many problems such as estimating no. of clusters, improving

scalability, set of initial centroids [5] due to k-means

sensitivity towards initial centroids.

In this paper we propose technique to generate

better initial centroids for k-means clustering over Apache™

Hadoop [6] to harness the power of distributed computing

with clustering technique. Hadoop [7] is an open-source

framework designed by Doug Cutting in 2006 at Yahoo that

works on MapReduce concept. MapReduce Parallel

Programming model was first introduced by Dean and

Ghemawat from Google.

The rest of the paper is organized as follows:

Section II represents fundamental of

Hadoop/MapReduce. Section III reviews K-Means

Clustering over Hadoop. In Section IV the proposed

technique for generation of initial centroids is discussed. In

Section V, the result represents performance of the

experiments for proposed method. Section VI represents

conclusion followed by future scope.

II. FUNDAMENTAL OF HADOOP/MAPREDUCE

Hadoop is a distributed software solution, distributed

framework, load of commodity machines, to store and

process the data. It is highly scalable, flexible and fault-

tolerant capable of processing TBs and PBs of data. Two

main components of Hadoop are: File storage and

Distributed Processing System.

Hadoop uses “HDFS (Hadoop distributed file

system)” that provides low cost storage and high throughput.

HDFS uses replication factor to store replicas of file across

collection of servers in a cluster. HDFS ensures data

availability by keeping the track of data and monitoring the

data blocks and also balances the data across data storage

nodes.

Hadoop uses MapReduce framework for

distributed processing of data. The processing is done on

data nodes and instead of collecting all data in one node and

processing it, Hadoop sends job to all data nodes resulting in

distributed processing. The job for MapReduce is mainly

written in java but further development led to the execution

of jobs written C, C++, PHP, Python, Pearl, etc.

MapReduce Internals:

A. Input Format

Determines how files are parsed into the MapReduce

pipeline [8].

B. Split Phase

Data is divided into input splits based on input format. Input

splits equate to map task which runs in parallel.

C. Mappers

Transforms the input splits into key value pairs based on

user-defined code.

D. Shuffle and Sort

Shuffle and sorts data by the given key and outputs to

reducer.

Generating Better Initial Centroids Over Hadoop for K-Means Clustering

 (IJSRD/Vol. 4/Issue 02/2016/068)

 All rights reserved by www.ijsrd.com 229

E. Reducers

Aggregate the results according to user-defined code.

F. Output Format

Determines how data is put back on HDFS.

Fig. 1: Map Reduce Internals

III. K-MEANS CLUSTERING OVER HADOOP

The input for K-Means over Hadoop [10] is given as

<key,value> pair, where key is the ‘centroid’ and ‘value’ is

serialized data nodes(objects) that are need to be clustered.

These keys and values are maintained in HDFS in separate

files. Centroid file contains initial centers either entered by

the user or selected randomly from the data nodes(objects)

to be clustered. These centers form ‘key’ for <key,value>

pair during Mapper phase.

Once Mapper is invoked, it receives the data in the

form of <key,value> pair, it then compares the distance

between the all the data nodes(objects) with each of the

centers mentioned, prior to Mapper call, in the centroid file

provided. If the data note is 1-dimentional then the

difference in the value of center and data note is calculated.

Once the computation ends, the data note(object) is assigned

to the nearest center i.e. center having minimum distance

with respect to data note or in case of 1-dimentional data,

center having minimum difference. After completion of

Mapper phase new <key,value> pairs are made with ‘key’ as

centers and ‘value’ as large set of data points having

minimum distance to that key.

Under Reduce phase, key is taken and mean of all

values is calculated that acts as a new centroid for that

particular cluster [9]. This process is done for all the keys,

resulting in set of new centroids for cluster along with data

points assigned to it. Once the centroids for every cluster is

updated, the new centers and set of data points are re-written

to the disk according to the Output Format making it ready

for next iteration.

The process continues until convergence, a stage

where the shifting of centroids stops i.e. there is no change

in the value of updated centroids.

IV. PROPOSED METHOD

Traditional k-Means algorithm requires initial data points as

center that are selected randomly. Since k-Means is highly

sensitive to initial centroids so random initial centroids may

produce different clustering results, which can lead large no.

of iterations to reach Convergence if performed over large

data sets.

New proposed method takes up the data points and

generates set of initial centroids for K-Means clustering.

1) Step1: Inputting data.

a) If first iteration, read the data nodes from data file.

b) Else read data nodes from last iteration.

2) Step2: Mapping Phase.

a) If first iteration, Map each ‘value’ i.e. data points to

key 1. And follow Step3.

b) Else take list of centroids from previous iteration as

‘key’ and compare each data point to each of the

centroid.

c) Centroid having maximum difference in value with

data point is selected.

d) Key, value pair is made with centroid as ‘key’ and

data point with max distance its ‘value’.

3) Step3: Emit out key value pairs to reducer.

4) Step4: Reducer Phase.

a) If first iteration, under reducer, sum up all values

for each key and count number of key. Aggregated

value is divided then divided by count of key

resulting in first initial centroid. The centroid forms

the ‘key’ and data points forms ‘value’. And follow

Step5.

b) Else take key and iterate over all its values to select

maximum value.

c) Selected value is then divided by 2.

d) This divided value acts as next initial centroid.

e) The updated centroid forms the ‘key’ and data

points forms the ‘value’.

5) Step5: Outputting the data.

Re-write the key and its values to disk in a file.

6) Step6: Repeat as per value of k where k is no. of

clusters required.

A. Algorithms for first iteration

Algorithm 1: Implementing KMEANS Function

1) Procedure KMEANS FUCNTION1.

2) LOAD cluster file from DIRECTORY.

3) CREATE new JOB

4) SET MAPPER to map class defined.

5) SET REDUCER to reduce class defined.

6) Paths for output directory.

7) SUBMIT JOB

8) END

Algorithm 2: Mapper Design for KMEANS Clustering

1) Procedure KMEANMAPDESIGN1

2) LOAD cluster file

3) CREATE s_id = 1//acts as a key

4) MAP

For each element ri , map(ri , s_id) //mapping each

value to s_id

5) COLLECT OUTPUT // <key,value> pairs ready for

reducer phase

Algorithm 3: Reducer Design for KMEANS Clustering

1) Procedure KMEANREDUCEDESIGN1

2) FETCH key

3) ITERATE over all values of that key

4) FOR key = 1

 Calculate
1

𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑢𝑛𝑡
∑ values //mean is

calculated

5) COLLECT OUTPUT

6) WRITE calculated mean to output DIRECTORY

Generating Better Initial Centroids Over Hadoop for K-Means Clustering

 (IJSRD/Vol. 4/Issue 02/2016/068)

 All rights reserved by www.ijsrd.com 230

B. Algorithms for second iteration and further

Algorithm 1: Implementing KMEANS Function

1) Procedure KMEANS FUCNTION2.

2) LOAD cluster file from DIRECTORY.

3) LOAD output from first iteration

4) CREATE itr = 0;

5) WHILE (itr < k)// k is the no. of clusters

a) CREATE new JOB

b) SET MAPPER to map class defined.

c) SET REDUCER to reduce class defined.

d) Paths for output directory.

e) SUBMIT JOB

f) INCREMENT itr

6) END

Algorithm 2: Mapper Design for KMEANS Clustering

1) Procedure KMEANMAPDESIGN2

2) CALL read (cluster file)

3) CALL read (mean from first iteration)

4) CREATE arraylist<mCenters> // forms key in

<key,value> pair

5) ADD m to mCenters // array list contains will add

centroids

6) ASSIGN correct data point

For each element , find the farthest data point to

cluster

7) FOREACH mCenters

a) CALCULATE maxDist(ri, mCenters)

b) Assign farthest ri to mCenters

8) COLLECT OUTPUT // <key,value> pairs

ready for reducer phase

Algorithm 3: Reducer Design for KMEANS Clustering

1) Procedure KMEANREDUCEDESIGN2

2) FETCH key

3) CREATE maxVal = 0

4) ITERATE over all values of specific key

a) If(value > maxVal)

maxVal = value

5) CALCULATE maxVal / 2 //next initial centroid

6) COLLECT OUTPUT

a) WRITE result to output DIRECTORY on HDFS

b) WRITE previous calculated initial centroid to same

output DIRECTORY on HDFS

V. RESULTS

We have implemented the Normal K-Means Algorithm over

Hadoop in java language and above proposed method for

generating better initial centroids for k-means clustering

over Hadoop. Data Set Used – weather dataset from the

National Climatic Data Center. No. of data sets used – 4.

No. of Nodes (data points processed) for each dataset –

41,92,914 (approx.). Size of data set 1 – 502.4 MB, data set

2 - 543.6 MB, data set 3 – 503. MB and data set 4 – 532.6

MB.

Since the algorithm is built over Hadoop, it is

tested over both Single Node [11] architecture and Multi-

Node [12] Architecture. Configuration for Hadoop – Single

Node (Intel® Core™ i7-4700MQ CPU @ 2.40GHz, 8GB

RAM, Ubuntu 14.10 64-bit) and Multi-Node (1st node -

Intel® Core™ i7-4700MQ CPU @ 2.40GHz, 8GB RAM,

Ubuntu 14.10 64-bit) (2nd node - Intel® Core™ i5-4200M

CPU @ 2.50GHz, 4GB RAM).

Initial centroids were generated from one

dimensional data nodes prior to k-means clustering up to

value k=3 i.e. 3 initial centroids for 3 clusters. These

centroids were then provided as input to K-Means over

Hadoop to initiate clustering process.

In Fig. 2, the generated initial centroids are

compared to randomly selected initial centroids to achieve

convergence for 502.4 MB data set. Fig. 3, represents the

similar reduction in iterations to reach the state of

convergence for 543.6 MB data set.

Fig. 2: Comparison of Iterations to achieve convergence for

502.4 MB data set

Fig. 3: Comparison of Iterations to achieve convergence for

543.6 MB data set

In figure 4, the generated initial centroids show fair

reduction in execution time to reach the state of convergence

compared to randomly selected initial centroids for 502.4

MB data set while figure 5 represents more reduction in

execution time for 543.6 MB data set to reach convergence.

Fig. 4: Comparison of Execution time to Convergence for

502.4 MB data set

Fig. 5: Comparison of Execution time to Convergence for

543.6 MB data set

Generating Better Initial Centroids Over Hadoop for K-Means Clustering

 (IJSRD/Vol. 4/Issue 02/2016/068)

 All rights reserved by www.ijsrd.com 231

VI. CONCLUSION

This paper presents a new and easy technique to generate

initial set of centroids for one dimensional data set. The

proposed method fairly reduces the no. of iterations to reach

convergence as K-Means is highly sensitive to set of initial

centroids. The execution time for K-Means Clustering job to

finish has also reduced making the technique useful for large

sets of data that would generally require large amount of

time to reach convergence as it has been observed in case of

randomly selected initial centroids. The result may vary for

different data sets.

No matter how good anything can be there is

always scope for improvement. Primary area of

improvement in any algorithm is its accuracy [9]. Another

area of improvement is the implementation of Combiner

Class to combine the intermediate output of Mapper for

further reduction in execution time. For higher dimensions,

modification to the proposed method can be done.

REFERENCES

[1] Fahim A. M., Salem A. M., F.A. Torkey and M.A.

Ramadan, “An Efficient enhanced k-means clustering

algorithm,” Journal of Zhejiang University, 10(7):

6261633, 2006.

[2] S. Revathi and Dr. T. Nalini, “Performance Comparison

of Various Clustering Algorithm,” IJARCSSE, vol. 3,

issue 2, February 2013.

[3] RekhaBaghel and Dr. RenuDhir, “A Frequent Concepts

Based Document Clustering Algorithm,” Int’l Journal

of Computer Applications, vol. 4, no.5, pp. 0975 –

8887, July 2010.

[4] Huang, “Similarity measures for text document

clustering,” Proc. of the 6th New Zealand Computer

Science Research Student Conference NZCSRSC, pp.

49-56, 2008.

[5] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.H.

Bae, J. Qiu, and G. Fox. Twister, “A runtime for

iterative mapreduce”, In Proceedings of the 19th ACM

International Symposium on High Performance

Distributed Computing, pages 810-818. ACM, 2010.

[6] Apache Hadoop. http://hadoop.apache.org/

[7] J. Venner, (June 22, 2009), Pro Hadoop. Apress.

[8] Learning BigData with CBT Nuggets at:

http://www.cbtnuggets.com/

[9] Prajesh P Anchalia, Anjan K Koundinya and Srinath N

K, “MapReduce Design of K-Means Clustering

Algorithm”, 978-1-4799-0604-8/13/ IEEE, 2013.

[10] K-Means over Hadoop, (visited on 21st December,

2015) at:

http://cmj4.web.rice.edu/MapRedKMeans.html

[11] Description of Single Node Cluster Setup, (visited on

22nd December, 2015) at: http://www.michael-

noll.com/tutorials/running-hadoop-on-ubuntu-linux-

single-node-cluster/

[12] Description of Multi Node Cluster Setup (visited on

23rd December, 2015) at: http://www.michael-

noll.com/tutorials/running-hadoop-on-ubuntu-linux-

multi-node-cluster/.

