More on the Diophantine Equation $27^{x} + 2^{y} = \mathbb{Z}^{2}$

G. Jeyakrishnan¹ Dr. G. Komahan²

¹Assistant Professor ²Research Advisor & Head of Dept.

^{1,2}Department of Mathematics

¹Kings College of engineering, Punalkulam, India ²A.V.V.M Sri Pushpam College, Poondi, India

Abstract— In this paper, we show that (0, 3, 3) is a unique non-negative integer solution for the Diophantine equation, $27^{x}+2^{y}=z^{2}$, where x, y and z are non-negative integers. *Key words:* Catalan Conjectures, Diophantine Equation

I. INTRODUCTION

In 2007, Acu [1] proved that (3, 0, 3) and (2, 1, 3) are only two solutions in non-negative integers of the Diophantine equation $2^{x}+5^{y}=z^{2}$. In 2013, Sroysang [2] proved that more on the Diophantine equation $2^{x} + 32^{y} = z^{2}$ has non-negative integer (3, 0, 3) is a unique non- negative integer solution. In this paper we will show that the Diophantine equation $27^{x} + 2^{y} = z^{2}$ has non-negative integer (0, 3, 3) is a unique nonnegative integer solution.

II. PRELIMINARIES

In 1844, Catalan [3] conjectures that the Diophantine equation $a^x - b^y=1$ has a unique integer solution with min{a, b, x, y}>1. The solution (a, b, x, y) is (3, 2, 2, 3). This conjecture was proven by Mihailescu [4] in 2004

A. Preposition 2.1

([5]). (3, 2, 2, 3) is a unique solution (a, b, x, y) of the Diophantine equation $a^x - b^y=1$, where a, b, x and y are integers with min{a, b, x, y}>1

B. Lemma 2.2

[1] (3, 3) is a unique solution of (y, z) for the Diophantine equation $1+2^{y}=z^{2}$. Where y and z are non-negative integers.

C. Lemma 2.3

The Diophantine equation $27^{x}+1=z^{2}$ has no non-negative integer solution where x and z are non-negative integers. 1) *Proof*

Suppose that there are non-negative integers x and z such that $27^{x}+1=z^{2}$. If x=0, then $z^{2}=2$ which is impossible. Then x ≥ 1 . Thus, $z^{2}=27^{x}+1\geq 27^{1}+1=28$, then z>5. Now we consider on the equation $z^{2}-27^{x}=1$. By preposition 2.1, we have x=1. Then $z^{2}=28$. This is a contradiction. Hence, the equation $27^{x}+1=z^{2}$ has no non negative integer solution.

III. RESULTS

A. Theorem 3.1

(0, 3, 3) is a unique solution (x, y, z) for the Diophantine equation $27^{x}+2^{y}=z^{2}$ where x, y and z non-negative integers. *1) Proof*

Let x, y and z be non-negative integers such that $27^{x}+2^{y}=z^{2}$. By lemma 2.3, we have $y \ge 1$. Thus z is odd then there is a non-negative integer t such that z=2t+1. We obtain that $27^{x}+2^{y}=4(t^{2}+t)+1$. Then $27^{x}\equiv 1 \pmod{4}$. Thus x is even. Then there is a non-negative integer k such that x=2k. We divide the number x into two cases.

- Case x=0. By lemma 2.2, we have y=3 and z=3.

- Case x≥2. Then k≥1. Then z²-27²k=2^y. Then (z-27^k) (z+27^k) =2^y. We obtain that z-27^k=2^u, where u is a nonnegative integer. Then z+27^k=2^{y-u}. It follows that 2(27^k)=2^{y-u}-2^u=2^u(2^{y-2u}-1). We divide the number u into two subcases.
- Subcase u=0. Then z-27^k=1. Then z is even. This is a contradiction.
- Subcase u=1. Then $2^{y-2}-1=27^k$. It follows that $2^{y-2}-27^k+1\ge 27+1=28$. Thus $y\ge 6$. More over $2^{y-2}-27^k=1$. By preposition 2.1, we have k=1, then $2^{y-2}=28$. This is impossible.

Therefore, (0,3,3) is a unique solution (x,y,z) for the equation $27^{x}+2^{y}=z^{2}$

B. Corollary 3.2

The Diophantine equation $27^{x}+2^{y}=w^{4}$ has no non-negative integer solution. Where x,y and w are non-negative integers. *1) Proof*

Suppose that there are non-negative integers x,y and w such that $27^{x}+2^{y}=w^{4}$. Let $z=w^{2}$. Then $27^{x}+2^{y}=z^{2}$. By lemma 3.1, we have (x,y,z)=(0,3,3). Then $w=z^{2}=3$. This is a contradiction.

C. Corollary 3.3

(0, 1, 3) is a unique solution of (x, y, z) for the Diophantine equation $27^{x}+8^{u}=z^{2}$, where x,u and z are non-negative integers.

1) Proof

Let x,y and z are non-negative integers such that $27^{x}+8^{u}=z^{2}$. Let y=3u. Then $27^{x}+2^{y}=z^{2}$. By theorem 3.1 we have (x, y, z)=(0,3,3). Then y=3u=3. Thus u=1. Therefore, (0, 3, 3) is a unique solution (x, u, z) for the equation $27x+8^{u}=z^{2}$.

D. Corollary 3.4

The Diophantine equation $27^{x}+32^{y}=z^{2}$ has no non-negative integer solution. Where x,u and z are non-negative integers. *1) Proof*

Suppose that there are non-negative integers x,u and z such that $27^{x}+32^{y}=z^{2}$. Let y=5u. Then $27^{x}+2^{y}=z^{2}$. By theorem 3.1, we have y=5u=3. This is contradiction.

REFERENCES

- [1] D.Acu, On a Diophantine equation $2^{x} + 5^{y} = z^{2}$, Gen. Math. 15(2007), 145-148.
- [2] B. Sroysang, More On the Diophantine equation $2^{x} + 37^{y} = z^{2}$, International Journal of pure and applied Mathematics 89(2013), 275-278.
- [3] E.Catalan, Note extraite dune letter addressee a lediteur, J.ReineAngew. Math.27 (1844), 192.
- [4] S.Chotchaisthit, On the Diophantine equation $4^{x} + p^{y} = z^{2}$, where p is a prime number, Amer.J. Math. Sci.1 (2012), 191-193.

- [5] P.Mihailescu, Primary cyclotomic units and a proof of catalan's conjecture, J.ReineAngew. Math 572(2004), 167-195
- [6] A.Suvarnamani, Solutions of the Diophantine equation $2^{x} + p^{y} = z^{2}$, Int. J. Math. Sci. Appl.1 (2011).1415-1419
- [7] A.Suvarnamani, a. singta and S. Chotchaisthit, On two Diophantine equation $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$, Sci.Technol.RMUTTJ.1(2011),25-28.
- [8] G.Jeyakrishnan & G.Komahan, on the Diophantine equation $128^x + 196^y = z^2$, Acta ciencia indica Mathematics,2(2016)195-196
- [9] P.Jayakumar&G.Shankarakalidoss, On two Diophantine equation $16^x + 23^y = z^2$ and $16^x + 29^y = z^2$, Archimedes J.Math. 4(2014), 99-102.

