
IJSRD - International Journal for Scientific Research & Development| Vol. 2, Issue 09, 2014 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 73

Comparative Study of Object Oriented Design and Component Based

Software Engineering
Aalisha Sheth

1
 Biyanta Shah

2
 Aayushi Shah

3

1,2,3
Institute of Technology, Nirma University

Abstract— Object Oriented Approach and Component

Based Software Engineering are two of the popular software

paradigms. In this paper we have shown how these two

paradigms differ from each other by conceptual comparison.

This paper will cover the property comparisons of these two

concepts and will also conclude a better concept in a

particular situation. It will also cover the future work

possible in this field.

Key words: Object Oriented, Component based components,

objects and classes, design, software development

paradigms

I. INTRODUCTION

Object oriented approach is the process of preparing a

system to interact with objects so as to solve a particular

problem. It is one of the methods for software designing.

Objects contain data, which represent the functionalities of

data or point to a particular function of the software. Object

oriented analysis analyzes the problems being faced by

system and accordingly designs the objects and classes.

Classes are the basis from which objects are created. Objects

may be distributed and they may be executed sequentially or

in parallel [1]. Objects are also easy to maintain and they are

reusable for various components. There are four main pillars

of object oriented programming which are Inheritance,

Polymorphism, Encapsulation and Data Abstraction. These

concepts provide the security and privacy that is needed for

data, increases the power of programming language by

creating user defined data types [2].

Component based software engineering is a branch

of software engineering that focuses on combining different

components from various applications to form an entirely

new application. It is typically based on reuse approach to

define and collaborate separate components into one.

Component Based Software Engineering (CBSE) was

developed due to the failure of object-oriented approach.

Object oriented approach had too specific classes while

CBSE has abstract classes and thus are considered to be lone

service providers [3]. There are four main functionalities in

CBSE like distinct components which are defined by their

particular interfaces, specific component standards which

help in component integration, middleware for

interoperability and a development module that can be used

for reuse [3]. CBSE also has independence feature because

the components do not interfere with each other and also

their implementations are well hidden. This gives some

amount of security to the developer. The platforms on which

the components work are shared and thus reduce the costs

[3].

In this paper we provide a top down approach of

the Object-oriented systems and component-based systems

conceptual comparison and their architectural and

qualitative analysis, which would clarify the boundaries

between OOA and CBSE. We also identify the various

criteria that affect the core qualities of these paradigms.

The flow of this paper goes as follows. Following the

Introduction, in section II we have the conceptual

differences between these two software development

paradigms. In section III we cover the quality analysis of the

paradigms. In section IV we have the quantitative and

qualitative aspects, which include their subsections as well.

Section V contains the future work that is possible in this

topic. The paper ends with the conclusion,

acknowledgments and references.

II. DIFFERENCES IN CONCEPTS

In Component Based Software Engineering (CBSE) the

components which are to be included in the new application

are to be integrated into the software and the components

need to communicate with the interfaces in order to make the

application work [4]. In Object Oriented Approach (OOA)

according to the need and requirement of the software to be

developed, to solve certain problems (or find solutions) the

various classes and objects are programmed and integrated.

In CBSE only the functioning of the various

components, their maintenance and the quality of service of

the components integrated in one application are to be

handled by the component provider. The management of

services, executing the service and deploying, versioning of

the service all are the functions of the service provider. While

in OOA all the classes and objects belong to the same service

provider and thus all the functionalities to be handled, the

services to be provided, maintenance and other functions are

all provided by the service provider. Also the services of

OOA are remotely executed and have to handle multiple

connections while in CBSE though the components can be

used at different places but they would not be related to each

other. Hence OOA has a higher stake in ownership than

CBSE.

Heterogeneity is another important property of

software. In CBSE as we know the different components

that make up the applications are picked up from the distinct

sources and they have to be integrated to work with each

other. Thus heterogeneity is a well-known factor in CBSE.

While in OOA the classes and objects are all programmed

into one application so these do not need to be compatible.

Thus if the classes and objects are taken from different

applications heterogeneity could be a problem for

integration. Thus heterogeneity property does not create a

problem in CBSE but in most cases of OOA it does create a

problem. However in CBSE there are a large number of

component models to choose from but only one model can

be chosen from because it is very difficult to combine

components of all the different models [4].

Coupling is the next property we will discuss.

Coupling is the amount of dependency on another program

module [6]. Coupling can be low or high. Low coupling is

better because it depends less on its other modules and

hence less dependability means less complications when

some changes are made. In Object-oriented all the objects

and classes are general and external hence coupling is

Comparative Study of Object Oriented Design and Component Based Software Engineering

 (IJSRD/Vol. 2/Issue 09/2014/016)

 All rights reserved by www.ijsrd.com 74

reduced. In CBSE design of an application is done

according to requirements hence there will be dependencies,

thus coupling is high here.

Contrary to coupling is another property known as

cohesion. In cohesion related functionalities are put into a

single unit. Cohesion should be high because high relativity

means better interoperability. In CBSE the components are

not at all related to each other. They are taken or

downloaded from different applications. Thus cohesion is

low. While in Object-oriented approach all the objects are

related to one another because the solution to the software

problem is to encapsulate all the information together [6].

Hence the components in OOD are related to each other and

cohesion is high.

The properties that we saw above are related to the

dynamic nature of the two concepts. As we noticed CBSE is

more for general-purpose applications.

III. QUALITY ANALYSIS

The properties that we will discuss now belong to the core

of these concepts. These properties decide the usability of

the software development paradigm. These properties are

the foundation of discussion of other properties like

flexibility, safety, security, privacy etc. [4].

There are three main properties:

A. Reusability

Reusability means to reuse the components of the model

again and again without any modification in the

components.

B. Composability

Composability is to safely integrate all the architectural

elements to create a new system [4].

C. Dynamicity

Dynamicity means to develop applications, which adjust to

the change in the developing environment or the user

requirements. Dynamicity is to adjust to these changes

automatically and autonomously.

For these two development paradigms the

comparison goes as follows:

Reusability is using the same components again

and again. In CBSE the same components cannot be used

again without some minor modification. While in object-

oriented approach the same objects can be used in some

other application program without any modification. Thus

Reusability is higher in OOA.

Composability is to integrate the architectural

elements. The main crux of CBSE is to integrate various

architectural elements to form a new application. In OOA

every architectural element may not be compatible and may

fail to integrate. Thus Composability is stronger in CBSE.

Dynamicity is automatically adapting to the

changes in the environment of the developing platform or

requirements of the user. CBSE paradigm develops the

components taken from different applications in such a way

that they dynamically adjust themselves to the changes in

the environment or changes in the user requirements. In

OOA the objects need to undergo a change if their platform

is changed. Thus dynamicity is stronger in CBSE.

We have depicted these properties as discussed

above comparing these two paradigms in a graphical

approach as shown below in figure 1.

Fig. 1 Comparison of core qualities

IV. QUANTITATIVE AND QUALITATIVE ASPECTS

A. Quantitative Aspects

The quantitative aspects define the concepts and structure of

the two paradigms. It gives the important theoretical view of

each paradigm. The most crucial categories are Product and

Process.

A Product is an entity, which is due to some action

or due to a process [4]. A process is a set of specific actions

that are performed to get a specific product or modify one.

The product category is divided into two parts:

1) Basic architectural elements

 These form the basic architectural structure of the

paradigm.

2) Composite architectural elements

 These are the modified version of the already

existing architectural elements. This points out the

reused elements and their relationships.

 There are two more abstraction levels namely the

design time and the run time in this category.

In CBSE the basic architectural elements at design

time would be component and connector types while at run

time they would have some instances of connectors and

components [4]. In Object-Oriented approach the basic

element in the design time would be the class while at run

time it would be the object.

In CBSE the composite architectural elements at

design time would be composite components and connectors

while at run time would be instances of composite

components and connectors. In Object-Oriented approach

the composite elements in design time will be the composite

class and at run time will be composite object.

We discussed the basics of product so now we turn

towards the process. Process category targets the reusability

in these two paradigms. The process category is further

divided into three categories, which are based on abstraction

and description levels

1) Inside Description Level

 All the processes in the same description level

between two abstraction levels are congregated.

2) Between Description Levels

 Processes that target products from different

description levels than the one from which it was

produced are congregated. It has design time and

run time levels [4].

Comparative Study of Object Oriented Design and Component Based Software Engineering

 (IJSRD/Vol. 2/Issue 09/2014/016)

 All rights reserved by www.ijsrd.com 75

3) Between Abstraction Levels

 The processes targeting product from design time

and then producing a product from run time are

congregated.

For Inside Description Level during design time

CBSE is associated with horizontal composition, refinement

and selective inheritance and object- oriented system is

associated with inheritance processes [4]. While during run

time where the communication processes are the main

aspects, CBSE uses functionality call and object-oriented

system is associated with different method call processes.

For the between description levels at design time in

CBSE, takes help of vertical composition while object

oriented system takes help of composition process to

develop a composite architectural element. During run time

it is the same case as inside description level where for

CBSE which takes help of functionality call and delegations

and Object oriented system takes help of method call

processes [4].

Abstraction levels need to link types and instances

for example in object-oriented class and object while in

CBSE components and connectors. Both CBSE and object-

oriented have instantiation processes to rely on for linking

types and instances [4].

This subsection was all about the structure of the

paradigms and how they function. Now we move towards

the software quality criteria.

B. Qualitative Aspects

The software quality criteria that we will discuss now are

based on several applications domain systems. The main

aim of this section is to see which of these criteria impact

the core qualities and classify these two paradigms; CBSE

and Object-oriented approach according to that.

There are six main features, which reflect the

impact on the core qualities discussed above, namely

reusability, Composability and dynamicity. These are:

1) Loose Coupling

 It measures the amount of dependencies between

separate entities.

2) Expression Ability

 Expression Ability is based on the amount of

concepts and processes that are provided by the

paradigm to modify its functions.

3) Abstraction of communication

 For security purposes we need to abstract the

communication layer which executes the

applications so that data is not manipulated in any

way. Thus this property defines the ability of a

paradigm to provide this kind of secure abstraction

at the communication layer.

4) Explicit architecture

 The user needs to know about the architecture of

the paradigm before using its applications. Ability

of a software paradigm to give a clear-cut view

about the architecture of the paradigm is known as

explicit architecture.

5) Evolutionary ability

 Over a point of time it might be necessary for

architectural elements to be able to evolve. The

ease with which they can evolve to provide

powerful concepts is known as evolutionary ability.

6) Ownership

 Some of the services such as maintenance,

execution, and management are with the provider

of the composite architectural element. It

sometimes allocates the responsibilities of these

services to the customer. These responsibilities are

known as ownership, which show the level of trust

and liberty given by the provider to the customer.

Loose coupling for an object based system is rare

because they are basically tightly coupled while component

based systems are comparatively loosely based. Hence loose

coupling is considered to be a challenge for component-

based systems.

Providing functionalities is the gist of Expression

ability. In CBSE there are not much such functionality. The

functions performed in CBSE are mostly based on object -

oriented systems. Though lately CBSE has evolved with

some advanced concepts such as inheritance and

polymorphism [4] but they have still not got the level that

object-oriented system attained. As we know in object-

oriented programming we have numerous functionalities

like polymorphism, abstraction, inheritance, encapsulation,

granularity etc. Thus Object-Oriented systems have higher

expression ability than Component based systems.

Abstraction of communication deals with the

abstraction of communication layer while executing the

applications. In CBSE there is no provision for abstraction

functionality. Also in CBSE the communication takes place

inside the connectors and thus global behavior is split. The

workflow is also not explicit and thus harder to manipulate.

While in Object-oriented systems have fine granularity due

to classes. These properties accentuate the drawback of

abstraction of the communication layer.

Giving an overview of the architecture of the

paradigm is Explicit Architecture. In CBSE this quality is

enhanced up to some extent but it still needs to be developed

more [4]. Object oriented systems certainly lack this over

view because it is only one system working within itself. So

the architecture is not specified properly.

Evolutionary Ability is related to explicit

architecture. The architecture is represented as nodes and

edges in a graph. Thus the nodes or edges are targeted for

evolution. As we know, CBSE can study the evolution from

the graph because it supports explicit architecture. While

Object-oriented is devoid of explicit architecture and thus

there is no focus on its graph.

For Ownership the component based systems

disintegrate the responsibility at deployment level. The

service provider gives liberty to the customer and the

customer is responsible for execution and management of

the application. While in Object-Oriented systems there is

absolutely no kind of ownership. All the processes are

transparent between the provider and the customer and the

customer is free to do what he likes.

 We have depicted these properties as discussed

above comparing these two paradigms in a graphical

approach as shown below in figure 2.

Comparative Study of Object Oriented Design and Component Based Software Engineering

 (IJSRD/Vol. 2/Issue 09/2014/016)

 All rights reserved by www.ijsrd.com 76

Fig. 2: Comparison of features

V. FUTURE WORK

As in every software paradigm or applications these

paradigms also have problems. The most serious issue is the

trustworthy property of the component. The component

coming from a remote source cannot be trusted. Also the

certification of various components is a troublesome

question. These problems are being worked upon to make

component-based systems efficient enough.

Also the hierarchy in properties shown in the two

graphs is only on the basis of theoretical information and

they certainly cannot be used for technical approach of

ranking these paradigms. For a fully technical approach

other features not included in this paper will have to be

compared.

VI. CONCLUSION

This paper defines the process, product and quality of the

two software paradigms and compares them so as to provide

a better understanding of CBSE and Object-oriented

Systems.

From this paper we have seen that CBSE is a better

paradigm when we have to use different components from

different applications and work on interoperability so as to

make them work in a single application. But OOA is more

useful in cases of coupling and cohesion and also provides

more security than CBSE systems. Hence according to the

requirements of the user, he/she can select any one paradigm

most suited for the particular application.

ACKNOWLEDGMENT

We would like to thank our professor, Prof Dhaval S. Jha

who mentored us during our paper and guided us with his

experience and useful comments.

REFERENCES

[1] http://www.codeproject.com/Articles/567768/Obje

ct-Oriented-Design-Principles.

[2] http://www.slideshare.net/sudarshan/object-

oriented-design

[3] Sommerville, “Software Engineering”: Pearson,

Eighth Edition.

[4] Anthony Hock-Koon, Mourad Oussalah, “Product-

Process- Quality Framework” in 2011, 37
th

EUROMICRO conference on Software

Engineering and Advanced Applications.

[5] sst.umt. edu.pk

/courses/cs540/CouplingandCohesion-student.ppt

[6] https://in.answers.yahoo.com

