
IJSRD - International Journal for Scientific Research & Development| Vol. 10, Issue 2, 2022 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 171

Restful Web Services

Kunal Agrawal1 Prof. Mr. S. S. Agrawal2

1,2College of Engineering & Technology, Akola, India

Abstract— Web’s major goal was to be a shared data house

through which individuals and machines may communicate.

By its nature, user actions at intervals a distributed

multimedia system need the transfer of enormous amounts of

information from wherever the info is hold on to wherever it's

used. Thus, the net design should be designed for large-grain

information transfer. The design must minimize the latency

the maximum amount as attainable. REST is employed to

create net services that ar light-weight, rectifiable, and

climbable in nature. A service that is made on the remainder

design is termed a reposeful service. The underlying protocol

for REST is communications protocol, that is that the basic

net protocol. REST stands for representational State transfer.

REST may be a thanks to access resources that consist a

specific atmosphere. For instance, you'll have a server that

might be hosting necessary documents or photos or videos.

All of those ar Associate in Nursing example of resources. If

a consumer, say an internet browser wants any of those

resources, it's to send a call for participation to the server to

access these resources. currently REST defines the way on

however these resources are often accessed. It should be

climbable, secure and capable of encapsulate bequest and

new parts well, as net is subjected to constant modification.

REST provides a collection of beaux arts constraints that,

once applied as an entire, address all higher than

aforementioned problems.

Keywords: Restful Web Services

I. INTRODUCTION

A Web service is a Web page that is meant to be consumed

by an autonomous program. Web service requires an

architectural style to make sense of them as there need not be

a human being on the receiver end to make sense of them.

REST (Representational State Transfer) represents the model

of how the modern Web should work. It is an architectural

pattern that distils the way the Web already works. REST

provides a set of architectural constraints that, when applied

as a whole, emphasizes scalability of component interactions,

generality of interfaces, independent deployment of

components, and intermediary components to reduce

interaction latency, enforce security, and encapsulate legacy

systems.

 REST is a hybrid architectural pattern which has

been derived from the following network based architectural

patterns. Client-Server: Separation of concerns is the

principle behind the client-server constraints. By separating

the user interface concerns from the data storage concerns,

we improve the portability of the user interface across

multiple platforms and improve scalability by simplifying the

server components. Separation allows the components to

evolve independently, thus supporting the Internet-scale

requirement of multiple organizational domains.

 Stateless: Each request from client to server must

contain all of the information necessary to understand the

request, and cannot take advantage of any stored context on

the server. Session state is therefore kept entirely on the

client. This constraint induces the properties of visibility,

reliability, and scalability. Visibility is improved because a

monitoring system does not have to look beyond a single

request datum in order to determine the full nature of the

request. Reliability is improved because it eases the task of

recovering from partial failures. Scalability is improved

because not having to store state between requests allows the

server component to quickly free resources, and further

simplifies implementation because the server doesn’t have to

manage resource usage across requests.

 Cache: In order to improve network efficiency, we

add cache constraints to form the client-cache stateless. If a

response is cacheable, then a client cache is given the right to

reuse that response data for later, equivalent requests. The

advantage of adding cache constraints is that they have the

potential to partially or completely eliminate some

interactions, improving efficiency, scalability, and user

perceived performance by reducing the average latency of a

series of interactions. The trade-off, however, is that a cache

can decrease reliability if stale data within the cache differs

significantly from the data that would have been obtained had

the request been sent directly to the server. Uniform Interface:

The central feature that distinguishes the REST architectural

style from other network-based styles is its emphasis on a

uniform interface between components. By applying the

software engineering principle of generality to the component

interface, the overall system architecture is simplified and the

visibility of interactions is improved. Implementations are

decoupled from the services they provide.

 Layered System: The layered system style allows

architecture to be composed of hierarchical layers by

constraining component behaviour such that each component

cannot see beyond the immediate layer with which they are

interacting. By restricting knowledge of the system to a single

layer, we place a bound on the overall system complexity and

promote substrate independence. Layers can be used to

encapsulate legacy services and to protect new services from

legacyclients. Code on Demand: REST allows client

functionality to be extended by downloading and executing

code in the form of applets or scripts. This simplifies clients

by reducing the number of features required to be pre-

implemented. Allowing features to be downloaded after

deployment improves system extensibility.

II. LITERATURE SURVEY

A. Background History

REST defines a set of architectural principles by which you

can design Web services that focus on a system's resources,

including how resource states are addressed and transferred

over HTTP by a wide range of clients written in different

languages. If measured by the number of Web services that

use it, REST has emerged in the last few years alone as a

predominant Web service design model. In fact, REST has

had such a large impact on the Web that it has mostly

displaced SOAP- and WSDL-based interface design because

it's a considerably simpler style to use.

Restful Web Services

 (IJSRD/Vol. 10/Issue 2/2022/050)

 All rights reserved by www.ijsrd.com 172

 A Web service is a Web page that is meant to be

consumed by an autonomous program. Web service requires

an architectural style to make sense of them as there need not

be a human being on the receiver end to make sense of them.

REST (Representational State Transfer) represents the model

of how the modern Web should work. It is an architectural

pattern that distils the way the Web already works. REST

provides a set of architectural constraints that, when applied

as a whole, emphasizes scalability of component interactions,

generality of interfaces, independent deployment of

components, and intermediary components to reduce

interaction latency, enforce security, and encapsulate legacy

systems.

 REST is a hybrid architectural pattern which has

been derived from the following network based architectural

patterns. Client-Server: Separation of concerns is the

principle behind the client-server constraints. By separating

the user interface concerns from the data storage concerns,

we improve the portability of the user interface across

multiple platforms and improve scalability by simplifying the

server components. Separation allows the components to

evolve independently, thus supporting the Internet-scale

requirement of multiple organizational domains. Stateless:

Each request from client to server must contain all of the

information necessary to understand the request, and cannot

take advantage of any stored context on the server. Session

state is therefore kept entirely on the client. This constraint

induces the properties of visibility, reliability, and scalability.

Visibility is improved because a monitoring system does not

have to look beyond a single request datum in order to

determine the full nature of the request. [2,4]

 Reliability is improved because it eases the task of

recovering from partial failures. Scalability is improved

because not having to store state between requests 4 allows

the server component to quickly free resources, and further

simplifies implementation because the server doesn’t have to

manage resource usage across requests. Cache: In order to

improve network efficiency, we add cache constraints to form

the client-cache stateless. If a response is cacheable, then a

client cache is given the right to reuse that response data for

later, equivalent requests. The advantage of adding cache

constraints is that they have the potential to partially or

completely eliminate some interactions, improving

efficiency, scalability, and user perceived performance by

reducing the average latency of a series of interactions. The

trade-off, however, is that a cache can decrease reliability if

stale data within the cache differs significantly from the data

that would have been obtained had the request been sent

directly to the server. Uniform Interface: The central feature

that distinguishes the REST architectural style from other

network-based styles is its emphasis on a uniform interface

between components.

 By applying the software engineering principle of

generality to the component interface, the overall system

architecture is simplified and the visibility of interactions is

improved. Implementations are decoupled from the services

they provide. Layered System: The layered system style

allows architecture to be composed of hierarchical layers by

constraining component behaviour such that each component

cannot see beyond the immediate layer with which they are

interacting. By restricting knowledge of the system to a single

layer, we place a bound on the overall system complexity and

promote substrate independence. Layers can be used to

encapsulate legacy services and to protect new services from

legacy clients. Code on Demand: REST allows client

functionality to be extended by downloading and executing

code in the form of applets or scripts. This simplifies clients

by reducing the number of features required to be pre-

implemented. Allowing features to be downloaded after

deployment improves system extensibility.

B. Problems in Existing System

SOAP is a protocol which was designed before REST and

came into the picture. The main idea behind designing SOAP

was to ensure that programs built on different platforms and

programming languages could exchange data in an easy

manner. SOAP stands for Simple Object Access Protocol.

SOAP cannot make use of REST since SOAP is a protocol

and REST is an architectural pattern. SOAP requires more

bandwidth for its usage. Since SOAP Messages contain a lot

of information inside of it, the amount of data transfer using

SOAP is generally a lot.

 HTTP is a synchronous, request/response protocol.

This means the protocol does not inherently support server-

initiated notifications (peer-to-peer), which are often

required. That's why call-backs in Retain applications require

the use of application-level design patterns like Webhooks.

Now that we have a bidirectional transport protocol in the

form of WebSocket’s, perhaps the industry should be looking

at layering a new application protocol on top of it that follows

Retain principles." This is interesting, given that over the past

year or so we have seen others discussed

whether WebSocket’s and REST are even compatible. There

is at least something that REST community could learn from

the Web Services stack: "These are all end-to-end protocols

layered on top of the core SOAP+WS-Addressing

"messaging" capability." Others have suggested similar in the

past. Ganesh then goes on to discuss an analogy between the

way Web Services uses WS-Addressing, WS-Reliable

Messaging, WS-Secure Conversation and WS-Policy and the

internet equivalents including TCP, IP and IPsec. Ganesh

suggests that REST's application idempotence may be better

for reliability (though does not define better in any context),

and perhaps there are alternatives to transactions for REST,

but he is left with:

 HTTP has too few verbs, particularly if you want to

do peer-to-peer interactions and has a few suggestions:

"INCLUDE (add to a resource collection and return a server-

determined URI), PLACE (add to a resource collection with

client-specified URI),REPLACE (in toto), FORCE (PLACE

or REPLACE), AMEND (partial update, a container verb

specifying one or more other verbs to specify operations on a

resource subset), MERGE (populate parts of the resource

with the supplied representation),RETIRE (a better word than

DELETE) and SOLICIT (a GET replacement that is also a

container verb, to tell the responding peer what to do to the

initiator's own resource(s), because this is a peer-to-peer

world now)

 HTTP combines application-level and transport-

level status codes (e.g., 304 Not Modified and 400 Bad

Request vs 407 Proxy Authentication Required and 502 Bad

Gateway). The next implementation of REST on another

http://www.infoq.com/news/2012/02/websockets-rest
http://www.infoq.com/news/2009/09/burke-reststar-soa-roa-rest

Restful Web Services

 (IJSRD/Vol. 10/Issue 2/2022/050)

 All rights reserved by www.ijsrd.com 173

transport should design for a cleaner separation between the

application protocol and the transport protocol. HTTP does

double-duty and the results are often a trifle inelegant.

C. Resource and Resource Identifier

Resource is basically a concept. Any raw information that

might be the target of hypertext reference can be termed as a

resource. Ex: an image or whether detail or even non-virtual

object like a person can be a resource. Resource can be static

i.e.; they correspond to same value set even when referred at

a time after creation or they may vary constantly. The abstract

definition of the resource has the advantage of referring the

concept rather than the representation, thus removing the

need to change all the links when the representation changes.

Resources are decoupled from their representation. REST

uses a resource identifier to identify the particular resource

involved in an interaction between components. It relies

instead on the author choosing a resource identifier that best

fits the nature of the concept being identified. [5,8]

 From the standpoint of client applications

addressing resources, the URIs determine how intuitive the

REST Web service is going to be and whether the service is

going to be used in ways that the designers can anticipate. A

third RESTful Web service characteristic is all about the

URIs. REST Web service URIs should be intuitive to the

point where they are easy to guess. Think of a URI as a kind

of self-documenting interface that requires little, if any,

explanation or reference for a developer to understand what

it points to and to derive related resources. To this end, the

structure of a URI should be straightforward, predictable, and

easily understood. One way to achieve this level of usability

is to define directory structure-like URIs. This type of URI is

hierarchical, rooted at a single path, and branching from it are

sub paths that expose the service's main areas. According to

this definition, a URI is not merely a slash-delimited string,

but rather a tree with subordinate and super-ordinate branches

connected at nodes. [1,2]

 Some points to make note while structuring the URI

for restful web services: Hide the server-side scripting

technology file extensions (. asp, pup, .asp), if any, so that the

port can be changed to something else without changing the

URIs. Everything should be in lower case. Substitute spaces

with hyphens or underscores. Instead of using the 404 Not

Found code if the request URI is for a partial path, always

provide a default page or resource as a response.[6]

D. Working

Following operations are used:

 GET: retrieve whatever information (in the form of an

entity) is identified by the Request-URI. Retrieve

representation, shouldn’t result in data modification.

 POST: request that the origin server accept the entity

enclosed in the request as a new subordinate of the

resource identified by the Request-URI. Annotation of

existing resources, extending a database through an

append operation, posting a message to a bulletin board,

or group of articles. Used to change state at the server in

a loosely coupled way (update).

 PUT: requests that the enclosed entity be stored under the

supplied Request-URI, create/put a new resource. It’s

used to set some piece of state on the server.

 DELETE: requests that the origin server deletes the

resource identified by the Request URI.

Fig. 2.1: This table summarizes the REST principles

A distributed hypermedia architect has only three

fundamental options:

 Render the data where it is located and send a fixed-

format image to the recipient.

 Encapsulate the data with a rendering engine and send

both to the recipient.

 Send the raw data to the recipient along with metadata

that describes the data type, so that the recipient can

choose their own rendering engine.

 REST provides a hybrid of all three options by

focusing on a shared understanding of data types with

metadata. REST components communicate by transferring a

representation of a resource in a format matching one of an

evolving set of standard data types, selected dynamically

based on the capabilities or desires of the recipient and the

nature of the resource. Whether the representation is in the

same format as the raw source, or is derived from the source,

remains hidden behind the interface. The benefits of the

mobile object style are approximated by sending a

representation that consists of instructions in the standard

data format of an encapsulated rendering engine (e.g., Java).

REST therefore gains the separation of concerns of the client-

server style without the server scalability problem, allows

Restful Web Services

 (IJSRD/Vol. 10/Issue 2/2022/050)

 All rights reserved by www.ijsrd.com 174

information hiding through a generic interface to enable

encapsulation and evolution of services, and provides for a

diverse set of functionalities through downloadable feature-

engines.

III. RELATED WORK

A Web Service is any service that is available over the

Internet, uses a standardized XML messaging system and is

not tied to any one operating system or programming

language. A Web Service is seen as an application accessible

to other applications over the web. However, despite the

commonness of the two definitions, they are still too rough

for practical usage. In a broader sense of the word, anything

that has an URL can be considered as a Web Services.

 A more precise definition is provided by the UDDI

consortium, which characterizes Web services as “self-

contained, modular business applications that have open,

Internet-oriented, standards-based interfaces. This definition

is more detailed, placing the emphasis on the need for being

compliant with Internet standards. In addition, it requires the

service to be open, which essentially means that it has a

published interface that can be invoked across the Internet.

Inspire of this clarification, the definition is still not precise

enough. It is not clear what it is meant by a modular, self-

contained business application. A more detailed definition is

provided by the World Wide Web consortium (W3C), the

group involved in the Web Service Activity. Web service is”

A software application identified by a URI, whose interfaces

and bindings are capable of being defined, described, and

discovered as XML artifices. A Web service supports direct

interactions with other software agents using XML-based

messages exchanged via Internet-based protocols”. [2,5]

 The W3C definition is quite accurate and also hints

at how Web Service should work. The definition stresses that

Web services should be capable of being “defined, described

and discovered,” thereby clarifying the meaning of

“accessible” and making more concrete the notion of

“Internet-oriented, standards-based interfaces.” It also states

that Web services are similar to the services in conventional

middleware. Web services are components that can be

integrated into more complex distributed applications. The

W3C also states that XML is part of the solution. More

specific definitions exist in Literature. In the online technical

dictionary Zebedia, a Web service is defined as “a

standardized way of integrating Web based applications using

the XML, SOAP, WSDL and UDDI open standards over an

Internet protocol backbone. XML is used to tag the data,

SOAP is used to transfer the data, WSDL is used for

describing the services available, and UDDI is used for listing

what services are available”. [4,8]

 Specific standards that could be used for performing

binding and for interacting with a web service are mentioned

in the above definition. These are the leading standards today

in Web services. Many applications that are “made accessible

to other applications” do so through SOAP, WSDL, UDDI

and other Web standards. However, these standards do not

constitute the essence of Web services technology.[10]

IV. SYSTEM DESIGN & IMPLEMENTATION

A. Rest Is Stateless

REST Web services need to scale to meet increasingly high-

performance demands. Clusters of servers with load-

balancing and failover capabilities, proxies, and gateways are

typically arranged in a way that forms a service topology,

which allows requests to be forwarded from one server to the

other as needed to decrease the overall response time of a

Web service call. Using intermediary servers to improve scale

requires REST Web service clients to send complete,

independent requests; that is, to send requests that include all

data needed to be fulfilled so that the components in the

intermediary servers may forward, route, and load-balance

without any state being held locally in between requests.

 A complete, independent request doesn't require the

server, while processing the request, to retrieve any kind of

application context or state. A REST Web service application

(or client) includes within the HTTP headers and body of a

request all of the parameters, context, and data needed by the

server-side component to generate a response. Statelessness

in this sense improves Web service performance and

simplifies the design and implementation of server-side

components because the absence of state on the server

removes the need to synchronize session data with an external

application. Following illustrates a stateful service from

which an application may request the next page in a

multipage result set, assuming that the service keeps track of

where the application leaves off while navigating the set. In

this stateful design, the service increments and stores a

previous Page variable somewhere to be able to respond to

requests for next. [3,6]

Fig. 4.1: Stateful Design

Restful Web Services

 (IJSRD/Vol. 10/Issue 2/2022/050)

 All rights reserved by www.ijsrd.com 175

 Stateful services like this get complicated. Stateless

server-side components, on the other hand, are less

complicated to design, write, and distribute across load-

balanced servers. A stateless service not only performs better,

it shifts most of the responsibility of maintaining state to the

client application. In a RESTful Web service, the server is

responsible for generating responses and for providing an

interface that enables the client to maintain application state

on its own. For example, in the request for a multipage result

set, the client should include the actual page number to

retrieve instead of simply asking for next.[7]

Fig. 4.2: Stateless Design

 A stateless Web service generates a response that

links to the next page number in the set and lets the client do

what it needs to in order to keep this value around. This aspect

of RESTful Web service design can be broken down into two

sets of responsibilities as a high-level separation that clarifies

just how a stateless service can be maintained:

B. Server

 Generates responses that include links to other resources

to allow applications to navigate between related

resources. This type of response embeds links. Similarly,

if the request is for a parent or container resource, then a

typical RESTful response might also include links to the

parent's children or subordinate resources so that these

remain connected.

 Generates responses that indicate whether they are

cacheable or not to improve performance by reducing the

number of requests for duplicate resources and by

eliminating some requests entirely. The server does this

by including a Cache-Control and Last-Modified (a date

value) HTTP response header.

C. Client application

 Uses the Cache-Control response header to determine

whether to cache the resource (make a local copy of it)

or not. The client also reads the Last-Modified response

header and sends back the date value in an If-Modified-

Since header to ask the server if the resource has

changed. This is called Conditional GET, and the two

headers go hand in hand in that the server's response is a

standard 304 code (Not Modified) and omits the actual

resource requested if it has not changed since that time.

A 304 HTTP response code means the client can safely

use a cached, local copy of the resource representation as

the most up-to-date, in effect bypassing subsequent GET

requests until the resource changes.

 Sends complete requests that can be serviced

independently of other requests. This requires the client

to make full use of HTTP headers as specified by the

Web service interface and to send complete

representations of resources in the request body. The

client sends requests that make very few assumptions

about prior requests, the existence of a session on the

server, the server's ability to add context to a request, or

about application state that is kept in between requests.

 This collaboration between client application and

service is essential to being stateless in a RESTful Web

service. It improves performance by saving bandwidth and

minimizing server-side application state.

V. MERITES & DEMERITES

A. Merits

 The restful web services have the scalable equipment

interactions.

 It possesses the general interfaces.

 It can independently deploy the connections.

 It decreases the interaction latency.

 It strengthens or improves the security.

 It has the feature of safe encapsulation of legacy systems.

 It sustains the proxies and gateways as information

transformation and caching equipment.

 Restful web services scale to a huge number of clients.

 It enables the alienate of information in streams that

possess infinite size.

 Scalable component interactions.

 General interfaces.

 Independently deployed connectors.

 Reduced interaction latency.

 Supports intermediaries (proxies and gateways) as data

transformation and caching components.

 Separates server implementation from the client’s

perception of resources (“Cool URIs Don’t Change”).

 Scales well to large numbers of clients.

 Enables transfer of data in streams of unlimited size and

type.

B. Demerits

 It destroys few advantages of other architectures.

 Restful web services have a state of interaction with an

FTP site.

Restful Web Services

 (IJSRD/Vol. 10/Issue 2/2022/050)

 All rights reserved by www.ijsrd.com 176

 It contains a single interface for everything.

 It reduces the performances of the new by enhancing the

repetitive information.

 It sacrifices some of the advantages of other

architectures.

 Stateful interaction with an FTP site.

 It retains a single interface for everything.

 The stateless constraint reflects a design trade-off. The

disadvantage is that it may decrease network

performance by increasing the repetitive data (per-

interaction overhead) sent in a series of requests, since

that data cannot be left on the server in a shared context.

In addition, placing the application state on the client-

side reduces the server’s control over consistent

application behaviour, since the application becomes

dependent on the correct implementation of semantics

across multiple client versions.

VI. APPLICATION/COMPARATIVE STUDY

RESTFUL WEB APPLICATION EXAMPLE

Fig. 5.1: Restful Web application Example

VII. CONCLUSION

Service-Oriented Architecture can be implemented in

different ways. General focus is on whatever architecture gets

the job done. SOAP and REST have their strengths and

weaknesses and will be highly suitable to some applications

and positively terrible for others. The decision of which to use

depends entirely on the circumstances of the application.

Constructing application to application Web services is

simple, in principle. SOAP, WSDL, and UDDI are:

 Unavoidable framework for XML communication and

service description.

 Surprisingly complicated and their benefits are not

always obvious, although the basic ideas behind them are

great.

 Still under development.

 REST stands for Representational State Transfer.

REST is used to build web services that are lightweight,

maintainable, and scalable in nature. More and more

applications are moving to the Restful architecture. This is

because there are a lot of people now using mobile devices

and a wider variety of applications moving to the cloud. The

main aspects of REST are the resources which reside on the

server and the verbs of GET, POST, PUT and DELETE,

which can be used to work with these resources. Visual

Studio and.Net can be used to create Restful web services.

When Testing web services for POST and PUT, you need to

Restful Web Services

 (IJSRD/Vol. 10/Issue 2/2022/050)

 All rights reserved by www.ijsrd.com 177

use another tool called fiddler which can be used to send the

POST and PUT request to the server.

REFERENCES

[1] T. Berners-Lee., “WWW: Past, present, and future”.

IEEE Computer, 29(10), Oct. 1996, pp. 69–77.

[2] Petasos, Cesare; Wilde, Erik; Alarcon, Rosa

(2014), REST: Advanced Research Topics and Practical

Applications, Springer, ISBN 9781461492986

[3] Petasos, Cesare; Zimmermann, Olaf; Lemann, Frank

(April 2008), "RESTful Web Services vs. Big Web

Services: Making the Right Architectural

Decision", 17th International World Wide Web

Conference (WWW2008)

[4] Ferreira, Octavio (Nov 2009), Semantic Web Services:

A RESTful Approach, IADIS, ISBN 978-972-8924-93-

5

[5] Fowler, Martin (2010-03-18). "Richardson Maturity

Model: steps towards the glory of

REST". Martinfowler.com. Retrieved 2017-06-26.

[6] Thomas Bayer, “REST Web Services” – Eine

Einfühlung (November 2002)

[7] Little, Mark (October 1, 2008). "A Comparison of JAX-

RS Implementations".

[8] Hadley, Marc and Paul Sandoz, eds. (September 17,

2009). JAX-RS: Java API for “RESTful Webservices “.

[9] Investigating Web Services on the World Wide Web, the

analysis presented at the, “WWW 2008 conference”.

[10] J. Elson, L. Giroud, and D. Destrin. Fine-grained

network time synchronization using reference

broadcasts. In Fifth Symposium on Operating Systems

Design and Implementation (OSDI 2002), Boston, MA,

USA., dec 2002.

https://www.springer.com/engineering/signals/book/978-1-4614-9298-6
https://www.springer.com/engineering/signals/book/978-1-4614-9298-6
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781461492986
http://www.jopera.org/docs/publications/2008/restws
http://www.jopera.org/docs/publications/2008/restws
http://www.jopera.org/docs/publications/2008/restws
https://otaviofff.github.io/restful-grounding/
https://otaviofff.github.io/restful-grounding/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-972-8924-93-5
https://en.wikipedia.org/wiki/Special:BookSources/978-972-8924-93-5
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
http://www.infoq.com/news/2008/10/jaxrs-comparison
http://www.infoq.com/news/2008/10/jaxrs-comparison
http://jcp.org/en/jsr/detail?id=311
http://www2008.org/papers/pdf/p795-almasriA.pdf
https://en.wikipedia.org/wiki/International_World_Wide_Web_Conference

