Wireless AC Supply On-Off System

Abhinav Chauhan¹ Daksh Chawla² Vinay Kumar³ Sandeep Sharma⁴
¹,²,³,⁴Department of Electronics & Communication Engineering
¹,²,³,⁴DIT University, Dehradun

Abstract—This work includes the information to develop and fabricate a wireless ac supply on-off system. Our motivation of
doing this project is physically differently abled individuals who face the difficulty in on-off of their room appliances like fan,
tube light. This project is also being successfully tested and implemented for motion of 60kg robot in Robowars at Techfest,
IIT Bombay and Robowars at Cognizance, IIT Roorkee. This is a simple type remote control by using RF communication
without microcontroller. In this project a remote has been designed for various home appliances like television, fan, lights,
etc. It gives lot of comfort to the user since we can operate it by staying at one place. We can control any of the appliances by
using this remote within the range of 400 feet.

Key words: Wireless AC Supply On-Off System, Transmitter Section, Receiver Section

I. INTRODUCTION

The motivation behind doing this project is Physically Differently Abled Individuals who face difficulties in operating the
room appliances like television, fan, lights etc. Till yet there are several techniques which are being used like infrared remote
system, GSM based Remote System but there are certain disadvantages like for the former it is based on line of sight (LOS)
communication and later is not cost effective. This project overcomes the both disadvantages. It is a radio based remote
system hence it is not based on Line of Sight (LOS) and the manufacturing cost is very less as compared to GSM Based
Remote System. In order to reduce the manufacturing cost we used Analog Integrated circuits in place of micro controllers
and single layer PCB copper Board. The complete system is divided into three parts i.e. transmitter(remote), receiver and
driver section .The encoder integrated circuit used at the transmitter end is HT-12E and decoder integrated circuit used at the
receiver end is HT-12D. In the driver section we simply used transistor as a switch which is coupled with the relay. Firstly
device testing and troubleshooting is done on the breadboard and driver section is simulated on Proteus. Proteus is also being
used for the designing of schematic and PCB layout. For the printing of layout we used glossy paper and print was taken on
the single layer copper board by using the electric press. The etching is being done by using Ferrous Chloride Solution. This
project is being manufactured at home hence the manufacturing cost is less. This project enhances the self-esteem of the
Differently Abled individual by making them self-dependent.

II. WORKING

Now day’s design of remote control circuit is very easy due to easy availability of the RF module in the market.

It mainly consists of three sections:

A. Transmitter Section:
Remote section consists of mainly an encoder i.e. HT-12E and a transmitting antenna i.e. ASK transmitter. This design allows
us to operate four devices simultaneously. The encoder generates 4 bit of data and 8 bit of address. We need to set the same
address at encoder and decoder IC pins A0 to A7 (pin 1 to 8) at transmitter and receiver. Every time on pressing any key at
the transmitter, a 4 bit data is generated correspondingly by the encoder and send s this data with 8bit address by using ASK
transmitter. The transmission frequency is 433MHz. The output of the transmitter is up to 8mW at 433.92MHz with a range
of approximately 400 foot (open area) i.e. outdoors and 200 foot indoors approximately.

B. Receiver Section:
Receiver section consists of a decoder i.e.HT12D and a receiving antenna i.e. ASK receiver. The operating frequency of the
receiver is same as the transmitting frequency i.e. 433.92MHz, with a sensitivity of 3uV. The DC voltage required for ASK
receiver to operate ranges from 4.5 to 5.5 volts, and gives both linear and digital outputs. Through RF transmission medium,
the data and addresses are received by the receiver serially which are transmitted by a carrier, the incoming address and data
are decoded when the oscillator is activated by a signal on the DIN pin. The received address is checked by the decoder three
times in continuation. If the received address is matches with the local address then it will enable the corresponding output
pin (pin 10, 11, 12, 13). To indicate the valid transmission, the VT (pin 17) goes high otherwise it will always be low.
C. Flow Chart

![Flow chart of Transmitter Section](image1)

![Flow chart of Receiver Section](image2)

D. Driver Section:
Driver section is basically designed to control the appliances that are operating at different voltages. Driver section consists of mainly transistors, diodes, and relays. Relays are used here to interface the circuits that are running at low voltage to the circuit running at high voltages. Each output signal at the receiver section is not capable to drive a relay directly. So we have used transistors to activate the relays. Fly back diodes are also used across the relays to prevent voltage spikes when the supply voltage is suddenly reduced or removed as it contains the inductive component.

III. PCB LAYOUT

![Pcb Layout of Transmitter](image3)

![Pcb Layout of Receiver](image4)

![Pcb Layout of Driver Section](image5)

We have made this project mainly concerning about the cost factor so that it becomes cost effective. The manufacturing cost of the project is 780 INR(approx.) and while doing Market survey, the estimation cost of this module is about 1800 INR.
IV. ORIGINAL PCB

![Original view of Transmitter circuit](image1)
![Original view of Receiver & Driver circuit](image2)

V. CONCLUSION

This project has been successfully designed and verified on A.C and D.C appliances. This project is being manufactured at home hence the manufacturing cost is less. This project enhances the self-esteem of the Differently Abled individual by making them self-dependent. This project can also be extended to various applications like controlling Heavy Robots.

REFERENCES