# A Work Paper on Experimental Analysis of Fly-Ash mix Nano-Silica in Geopolymer Concrete for Economical Behavior of the Structure

Amir Usmani<sup>1</sup> Prof. Kamni Laheriya<sup>2</sup>

<sup>2</sup>Assistant Professor

<sup>1,2</sup>Department of Civil Engineering

<sup>1,2</sup>SSSUTMS Sehore (M. P.), India

*Abstract*— Fresh fly ash-based Nano-Silica in Geopolymer concrete has been able to remain workable up to at least 120 minutes without any sign of setting and without any degradation in the compressive strength. Providing a rest period for fresh in Geopolymer concrete after casting before the start of curing up to five days increased the compressive strength of hardened in Geopolymer concrete. The elastic properties of hardened fly ash-based Nano-Silica in Geopolymer concrete, i,e. the modulus of elasticity, the Poisson's ratio, and the indirect tensile strength, are similar to those of ordinary Portland cement in Geopolymer concrete. *Keywords:* Geopolymer concrete, Fly-Ash mix Nano-Silica, compressive strength, tensile strength, Portland Cement, Variability

#### I. INTRODUCTION

The various materials used in the production of Geopolymer concrete, cement plays a major role due its size and adhesive property. So, the produce to make Geopolymer concrete with improved properties, the mechanism of cement hydration has to be studied properly and better substitutes to it have to be suggested. Different materials known as supplementary cementitious materials or SCMs are added to Geopolymer concrete improve its properties. Some of these are fly ash, blast furnace slag, rice husk, Nano-Silica fumes and even bacteria. Of the various technologies in use, Fly-Ashtechnology looks to be a promising approach in improving the properties of Geopolymer concrete.

The stress-strain relations of fly-ash based Nano-Silica in Geopolymer concrete fit well with the expression developed for ordinary Portland cement in Geopolymer concrete. The types and relative amounts of incombustible matter in the coal determine the chemical composition of fly ash. This work primarily deals with the compressive strength characteristics such as water absorption super plasticizer used in high performance in Geopolymer concrete a set of 4 different in Geopolymer concrete mixture were cast and tested with different cement replacement levels of Fly ash (FA) with nano Nano-Silica (NS) as addition by wt of Cement and/or each trial super plasticizer has been added at constant values to achieve a constant range of slump for desired work ability with a constant water-binder (w/b) ratio of 0.30.

## II. LITERATURE REVIEW

A comparative analysis of this work has been presented in the summary of this chapter which will highlight the significance of each work. Out of the numerous work done in the field only a few relevant works have been highlighted in the next section.

[Ali Nazari et.al. (2016)] studied strength and percentage water absorption of SCC containing different

amount of GGBFS and TiO2 Fly-Ash particles. The findings of the experimentation are that replacement of Portland cement with up to 45% weight of GGBNS and up to 4% weight of TiO2 Fly-Ash particles gives a considerable increase to the compressive, split tensile and flexural strength of the blended in Geopolymer concrete.

[Sekari and Razzaghi (2017)] studies the effect of constant content of Fly-Ash ZrO2, Fe2O3, TiO2, and Al2O3 on the properties of in Geopolymer concrete. The reults showed that all the Fly-Ash particles have noticeable influence on improvement on durability properties of in Geopolymer concrete but the contribution of Fly-Ash Al2O3 on improvement of mechanical properties of HPC is more than the other Fly-Ash particles.

[Girao et al., Yazdanbakhsh et al., (2019)] The incorporation of nano-additives and nano-cement replacements such as silica fume, nano-SiO 2, nano-clay, carbon nanotubes and nano-fly ash in cement matrix has significantly refined the pastes microstructure. Furthermore, it has directly improved strength to the cement pastes and enhanced the durability of mortar and in Geopolymer concrete.

[Huaqing Liu, Yan Zhang, Ruiming Tong, Zhaoqing Zhu, and Yang Lv (2020)] Surface protection has been accepted as an effective way to improve the durability of in Geopolymer concrete. In this study, nanosilica (NS) was used to improve the impermeability of cement-fly ash system and this kind of material was expected to be applied as surface protection material (SPM) for in Geopolymer concrete. Binders composed of 70% cement and 30% fly ash (FA) were designed and nanosilica (NS, 0–4% of the binder) was added. The workability of fresh in Geopolymer concrete and the compressive strength of hardened in Geopolymer concrete increase.

#### III. METHODOLOGY

The details of the properties of the materials used, the method followed to design the experiment and the test procedures followed. The theory is supplemented with a number of pictures to have a clear idea on the methods.

| Physical Properties of Nat     | no-Silica:     |  |  |  |  |  |  |  |
|--------------------------------|----------------|--|--|--|--|--|--|--|
| Physical properties            | Nano-Silica    |  |  |  |  |  |  |  |
| Particle shape                 | Multifaceted   |  |  |  |  |  |  |  |
| Appearance                     | Black & glassy |  |  |  |  |  |  |  |
| Type Air                       | Cooled         |  |  |  |  |  |  |  |
| Specific gravity               | 3.51           |  |  |  |  |  |  |  |
| Bulk density at 250 C (Ton/m3) | 1.8 - 2.2      |  |  |  |  |  |  |  |
| Hardness                       | 5 – 7 Mohs     |  |  |  |  |  |  |  |
| pH                             | 6.5            |  |  |  |  |  |  |  |
| Conductivity at 250            | Nil            |  |  |  |  |  |  |  |
| Moisture Content               | < 0.1%         |  |  |  |  |  |  |  |
| Chaminal Descention of Ma      | C'1'           |  |  |  |  |  |  |  |

Chemical Properties of Nano-Silica:

| Chemical component | % of Chemical component |
|--------------------|-------------------------|
| SiO2               | 33-35 %                 |
| Fe2O3              | 40-44%                  |
| A12O3              | 4-6%                    |
| CaO                | 0.8-1.5%                |
| MgO                | 1-2%                    |
| Properti           | es of Fly-Ash           |

| Properties of Fly-Ash |              |         |  |  |  |  |  |  |  |
|-----------------------|--------------|---------|--|--|--|--|--|--|--|
| TEST ITEM             | STANDARD     | TEST    |  |  |  |  |  |  |  |
| TESTTIEM              | REQUIREMENTS | RESULTS |  |  |  |  |  |  |  |
| SPECIFIC              |              |         |  |  |  |  |  |  |  |
| SURFACE               | 200 + 20     | 202     |  |  |  |  |  |  |  |
| AREA (m2/g)           |              |         |  |  |  |  |  |  |  |
| PH VALUE              | 3.7 – 4.5    | 4.12    |  |  |  |  |  |  |  |
| LOSS ON               |              |         |  |  |  |  |  |  |  |
| DRYING @ 105          | < 1.5        | 0.47    |  |  |  |  |  |  |  |
| DEG.C (5)             |              |         |  |  |  |  |  |  |  |
| LOSS ON               |              |         |  |  |  |  |  |  |  |
| IGNITION @            | < 2.0        | 0.66    |  |  |  |  |  |  |  |
| 1000 DEG.C (%)        |              |         |  |  |  |  |  |  |  |
| SIEVE RESIDUE         | < 0. 04      | 0.02    |  |  |  |  |  |  |  |
| (5)                   | < 0.04       | 0.02    |  |  |  |  |  |  |  |
| TAMPED                | 40 - 60      | 44      |  |  |  |  |  |  |  |
| DENSITY (g/L)         | 40 - 00      | 44      |  |  |  |  |  |  |  |
| SiO2 CONTENT          | > 99. 8      | 99.88   |  |  |  |  |  |  |  |
| (%)                   | > 77. 0      | 77.00   |  |  |  |  |  |  |  |
| CARBON                | < 0. 15      | 0.06    |  |  |  |  |  |  |  |
| CONTENT (%)           | < 0.15       | 0.00    |  |  |  |  |  |  |  |

| CHLORIDE<br>CONTENT (%) | < 0. 0202 | 0.009 |
|-------------------------|-----------|-------|
| A12O3                   | < 0. 03   | 0.005 |
| TiO2                    | < 0. 02   | 0.004 |
| Fe2O3                   | < 0. 003  | 0.001 |

A. Proportion of Volume of Coarse Aggregate and Fine Aggregate Content:

Volume of coarse aggregate per unit volume of total aggregate (ISC: 10262-1982) = 0.64

(This is corresponding to 20 mm size aggregate and Zone III fine aggregate for water-cement ratio of 0.50)

As the water-cement ratio is lowered by 0.05, the proportion of volume of coarse aggregate is increased by 0.01 (ref. Table 6 of IS: 10262-1982)

Corrected volume of coarse aggregate per unit volume of total aggregate = (0.64+0.014) = 0.654

Volume of fine aggregate per unit volume of total aggregate = 1-0.654 = 0.346

# B. Compressive Strength Test

The compressive strength of specimens is determined after 7 and 28 days of curing with surface dried condition as per Indian Standard IS: 516-1959. Three specimens are tested for typical category and the mean compressive strength of three specimens is considered as the compressive strength of the specified category.

|   |            | IV. E             | XPERIMENTAI | RESULTS                    |     |  |  |  |  |  |  |
|---|------------|-------------------|-------------|----------------------------|-----|--|--|--|--|--|--|
| - |            | 7-DAY TEST RESULT |             |                            |     |  |  |  |  |  |  |
|   | Sample No. | Weight (kg)       | Load (ton)  | Compressive Strength (MPa) |     |  |  |  |  |  |  |
|   | Specimen 1 | 6.68              | 43          | 18.75                      | 1.1 |  |  |  |  |  |  |
|   | Specimen 2 | 7.24              | 56          | 24.42                      |     |  |  |  |  |  |  |
|   | Specimen 3 | 7.35              | 52          | 22.67                      |     |  |  |  |  |  |  |
|   | Avera      | age Strength (N   | /IPa)       | 21.94                      |     |  |  |  |  |  |  |

|        | Table: Compressive Strength of M20 Grade with 15% Fly Ash & 0% Nano Silica |         |          |                     |      |          |                   |       |          |          |            |          |  |
|--------|----------------------------------------------------------------------------|---------|----------|---------------------|------|----------|-------------------|-------|----------|----------|------------|----------|--|
|        | (                                                                          | 0.5% b. | w.c      | <i>w.c</i> 1% b.w.c |      |          | 1% b.w.c 2% b.w.c |       |          |          | 2.5% b.w.c |          |  |
| Sample | weight                                                                     | load    | Comp.    | weight              | load | Comp.    | weight            | load  | Comp.    | weight   | load       | Comp.    |  |
|        | kg                                                                         | ton     | strength | kg                  | ton  | strength | kg                | ton   | strength | kg       | ton        | strength |  |
| S-1    | 6.98                                                                       | 52      | 22.67    | 6.92                | 61   | 26.596   | 7.06              | 66    | 28.764   | 7.12     | 64         | 27.904   |  |
| S-2    | 7.11                                                                       | 63      | 27.468   | 7.28                | 64   | 27.904   | 7.64              | 69    | 30.084   | 7.72     | 68         | 29.648   |  |
| S-3    | 7.02                                                                       | 65      | 28.34    | 7.95                | 66   | 28.776   | 7.98              | 74    | 32.264   | 8.08     | 71         | 30.956   |  |
| Avera  | age Strens                                                                 | gth     | 26.16    | Av. Strength 27.76  |      |          | Av. Str           | ength | 30.37    | Av. Stre | ength      | 29.50    |  |

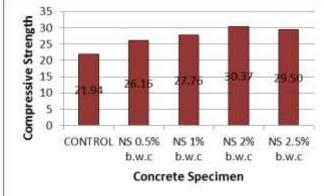
Table: 7 days Compressive Strength in (MPa) of M20 Grade with different % of Nano-Silica & 15% Fly Ash

|            | 14-DAY TEST RESULT                                           |      |        |  |  |  |  |  |  |  |  |
|------------|--------------------------------------------------------------|------|--------|--|--|--|--|--|--|--|--|
| Sample No. | Sample No. Weight (kg) Load (tonne) Compressive Strength (MP |      |        |  |  |  |  |  |  |  |  |
| Specimen 1 | 6.92                                                         | 46   | 20.056 |  |  |  |  |  |  |  |  |
| Specimen 2 | 7.18                                                         | 56   | 24.416 |  |  |  |  |  |  |  |  |
| Specimen 3 | 7.22                                                         | 51   | 22.236 |  |  |  |  |  |  |  |  |
| Ave        | rage Strength (                                              | MPa) | 22.236 |  |  |  |  |  |  |  |  |

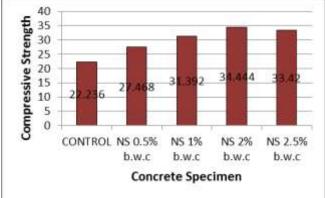
Table: Compressive Strength in (MPa) of M20 Grade plain specimen for 14 day & 0% Nano Silica

|        | (          | ).5% b. | w.c      | 1% b.w.c |       |          | 2% b.w.c |       |          | 2.5% b.w.c |       |          |
|--------|------------|---------|----------|----------|-------|----------|----------|-------|----------|------------|-------|----------|
| Sample | weight     | load    | Comp.    | weight   | load  | Comp.    | weight   | load  | Comp.    | weight     | load  | Comp.    |
|        | kg         | ton     | strength | kg       | ton   | strength | kg       | ton   | strength | kg         | ton   | strength |
| S-1    | 7.24       | 56      | 24.416   | 7.18     | 70    | 30.52    | 7.24     | 76    | 33.136   | 7.08       | 73    | 31.828   |
| S-2    | 7.02       | 64      | 27.904   | 6.97     | 72    | 31.392   | 7.08     | 79    | 34.444   | 6.72       | 77    | 33.572   |
| S-3    | 6.91       | 69      | 30.084   | 7.36     | 74    | 32.264   | 7.41     | 82    | 35.752   | 7.11       | 80    | 34.88    |
| Avera  | ige Streng | gth     | 27.468   | Av. Stre | ength | 31.392   | Av. Stre | ength | 34.444   | Av. Stre   | ength | 33.42    |

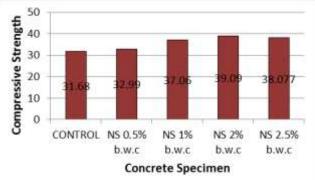
Table: 14 days Compressive Strength in (MPa) of M20 Grade with different % of Nano-Silica & 15% Fly Ash


|                                                                            |                                                                                                                                |                                                                                                                                                           | 28-DAY TEST RESULT           Sample No.         Weight (kg)         Load (tonne)         Compressive Strength (MPa)                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                         |                                                                                                                    |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                                                                            |                                                                                                                                |                                                                                                                                                           | Sample No.                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Load (tonne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pa)                                                                                          |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           | Specimen 1                                                                                                                                                                                                                                                                                                                                  | 7.38                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | .136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            | Specimen 2                                                                                                                     |                                                                                                                                                           | 7.21                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                 | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           | Specimen 3                                                                                                                                                                                                                                                                                                                                  | 6.96                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | .648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             | rage Strer                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | 1.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             | pressive S                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | th of M20 Gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | de plain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            | (                                                                                                                              | ).5% b.                                                                                                                                                   | w.c                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                 | 1% b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .w.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2% b.v                                                                                                                                                                                            | w.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | 2.5% b.                                                                                                 | w.c                                                                                                                |
| Sample                                                                     | weight                                                                                                                         | load                                                                                                                                                      | Comp.                                                                                                                                                                                                                                                                                                                                       | weight                                                                                                                                                                                                                                                                          | load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Comp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | load                                                                                                                                                                                              | Comp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | weight                                                                                       | load                                                                                                    | Comp.                                                                                                              |
| -                                                                          | kg                                                                                                                             | ton                                                                                                                                                       | strength                                                                                                                                                                                                                                                                                                                                    | kg                                                                                                                                                                                                                                                                              | ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ton                                                                                                                                                                                               | strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kg                                                                                           | ton                                                                                                     | strength                                                                                                           |
| S-1                                                                        | 6.86                                                                                                                           | 76                                                                                                                                                        | 33.136                                                                                                                                                                                                                                                                                                                                      | 7.36                                                                                                                                                                                                                                                                            | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84                                                                                                                                                                                                | 36.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.42                                                                                         | 82                                                                                                      | 35.752                                                                                                             |
| S-2                                                                        | 7.14                                                                                                                           | 71                                                                                                                                                        | 30.95                                                                                                                                                                                                                                                                                                                                       | 7.52                                                                                                                                                                                                                                                                            | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91                                                                                                                                                                                                | 39.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.54                                                                                         | 89                                                                                                      | 38.804                                                                                                             |
| S-3                                                                        | 7.04                                                                                                                           | 80                                                                                                                                                        | 34.88                                                                                                                                                                                                                                                                                                                                       | 7.24                                                                                                                                                                                                                                                                            | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94                                                                                                                                                                                                | 40.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.28                                                                                         | 91                                                                                                      | 39.676                                                                                                             |
| Avera                                                                      | age Streng                                                                                                                     | gth                                                                                                                                                       | 32.99                                                                                                                                                                                                                                                                                                                                       | Av. Stre                                                                                                                                                                                                                                                                        | ength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Av. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ength                                                                                                                                                                                             | 39.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Av. Str                                                                                      | ength                                                                                                   | 38.077                                                                                                             |
| Table: 28                                                                  | days Con                                                                                                                       | pressiv                                                                                                                                                   | ve Strength in                                                                                                                                                                                                                                                                                                                              | n (MPa) o                                                                                                                                                                                                                                                                       | f M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | O Grade with d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ifferent %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 of Na                                                                                                                                                                                           | no Nano-Sil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ica & 159                                                                                    | % Fly A                                                                                                 | sh                                                                                                                 |
|                                                                            |                                                                                                                                |                                                                                                                                                           | U                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DAY TEST RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              | 2                                                                                                       |                                                                                                                    |
|                                                                            |                                                                                                                                | 5                                                                                                                                                         | Sample No.                                                                                                                                                                                                                                                                                                                                  | Weight                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Load (tonne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ressive                                                                                                                                                                                           | Strength (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pa)                                                                                          |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           | Specimen 1                                                                                                                                                                                                                                                                                                                                  | 8.65                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>62</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | .032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           | Specimen 2                                                                                                                                                                                                                                                                                                                                  | 8.81                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | .624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           | Specimen 3                                                                                                                                                                                                                                                                                                                                  | 8.92                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                | _                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                             | rage Strer                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   | 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            | -                                                                                                                              | ∟<br>Fahle∙ (                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 Grade plain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | snecime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ano Silico                                                                                   | a                                                                                                       |                                                                                                                    |
|                                                                            |                                                                                                                                | ).5% b.                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                             | Sucingui                                                                                                                                                                                                                                                                        | $\frac{01}{1\%}$ b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{1101}{2\%}$ b.v                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              | 1<br>2.5% b.                                                                                            | WC                                                                                                                 |
| Sample                                                                     | weight                                                                                                                         | load                                                                                                                                                      | Comp.                                                                                                                                                                                                                                                                                                                                       | weight                                                                                                                                                                                                                                                                          | load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2% D.V                                                                                                                                                                                            | Comp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | weight                                                                                       | 2.3% D.<br>load                                                                                         | Comp.                                                                                                              |
| Sample                                                                     | -                                                                                                                              |                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                            |                                                                                                         | -                                                                                                                  |
| S-1                                                                        | kg                                                                                                                             | ton<br>76                                                                                                                                                 | strength                                                                                                                                                                                                                                                                                                                                    | kg                                                                                                                                                                                                                                                                              | ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ton                                                                                                                                                                                               | strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kg<br>9.08                                                                                   | ton                                                                                                     | strength                                                                                                           |
|                                                                            | 9.04                                                                                                                           |                                                                                                                                                           | 33.136                                                                                                                                                                                                                                                                                                                                      | 9.10                                                                                                                                                                                                                                                                            | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84                                                                                                                                                                                                | 38.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              | 82                                                                                                      | 35.752                                                                                                             |
| S-2                                                                        | 9.12                                                                                                                           | 80                                                                                                                                                        | 34.88                                                                                                                                                                                                                                                                                                                                       | 9.14                                                                                                                                                                                                                                                                            | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89                                                                                                                                                                                                | 38.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.38                                                                                         | 86                                                                                                      | 37.496                                                                                                             |
| S-3                                                                        | 9.0                                                                                                                            | 84                                                                                                                                                        | 36.624                                                                                                                                                                                                                                                                                                                                      | 9.14                                                                                                                                                                                                                                                                            | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95                                                                                                                                                                                                | 41.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.20                                                                                         | 91                                                                                                      | 39.676                                                                                                             |
| Average Strength34.88Av. Strength36.188Av. Strength39.53Av. Strength37.641 |                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 | MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of M30 Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with dif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                | ys Com                                                                                                                                                    | pressive Stre                                                                                                                                                                                                                                                                                                                               | ength in (N                                                                                                                                                                                                                                                                     | MPa)<br>14-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of M30 Grade<br>DAY TEST RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e with dif<br>ESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ferent 9                                                                                                                                                                                          | % of Nano-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Silica & 1                                                                                   |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                | ys Com                                                                                                                                                    | pressive Stre<br>Sample No.                                                                                                                                                                                                                                                                                                                 | ength in (N<br>Weight                                                                                                                                                                                                                                                           | MPa)<br>14-]<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of M30 Grade<br>DAY TEST RI<br>Load (tonne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e with dif<br>ESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ferent %<br>ressive                                                                                                                                                                               | % of Nano-S<br>Strength (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Silica & 1                                                                                   |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                | ys Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1                                                                                                                                                                                                                                                                                                   | ength in (N<br>Weight<br>8.78                                                                                                                                                                                                                                                   | MPa)<br>14-]<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e with dif<br>ESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ferent 9<br>ressive<br>29                                                                                                                                                                         | % of Nano-S<br>Strength (M<br>.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silica & 1                                                                                   |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                | ys Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2                                                                                                                                                                                                                                                                                     | weight in (N<br>Weight<br>8.78<br>8.86                                                                                                                                                                                                                                          | MPa)<br>14-1<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e with dif<br>ESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ferent 9<br>ressive<br>29<br>37                                                                                                                                                                   | % of Nano-S<br>Strength (M<br>.648<br>.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Silica & 1                                                                                   |                                                                                                         |                                                                                                                    |
|                                                                            |                                                                                                                                | ys Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3                                                                                                                                                                                                                                                                       | ength in (1<br>Weight<br>8.78<br>8.86<br>9.06                                                                                                                                                                                                                                   | MPa)<br>14-1<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e with dif<br>ESULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ressive<br>29<br>37<br>34                                                                                                                                                                         | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silica & 1                                                                                   |                                                                                                         |                                                                                                                    |
| Ta                                                                         | ıble: 7 day                                                                                                                    | ys Com                                                                                                                                                    | Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave                                                                                                                                                                                                                                                                                 | Weight<br>8.78<br>8.86<br>9.06<br>rage Strer                                                                                                                                                                                                                                    | MPa)<br>14-1<br>(kg)<br>ngth (.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e with dif<br>ESULT<br>Compi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ressive<br>29<br>37<br>34<br>33                                                                                                                                                                   | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Silica & 1                                                                                   |                                                                                                         |                                                                                                                    |
| Ta                                                                         | ble: 7 day                                                                                                                     | ys Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G                                                                                                                                                                                                                                                 | Weight<br>8.78<br>8.86<br>9.06<br>rage Strer                                                                                                                                                                                                                                    | MPa)<br>14-1<br>(kg)<br>ngth (in spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e with dif<br>ESULT<br>Compi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ressive<br>29<br>37<br>34<br>33<br>Nano S                                                                                                                                                         | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>illica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silica & 1<br>Pa)                                                                            | 5% Fly                                                                                                  | Ash                                                                                                                |
| Ta                                                                         | ble: 7 day                                                                                                                     | ys Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G                                                                                                                                                                                                                                                 | Weight (1)<br>Weight (1)<br>8.78<br>8.86<br>9.06<br>rage Strer<br>trade plain                                                                                                                                                                                                   | MPa)<br>14-1<br>(kg)<br>ngth (.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e with dif<br>ESULT<br>Compr<br>Compr<br>ay & 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ressive<br>29<br>37<br>34<br>33                                                                                                                                                                   | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>illica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silica & 1<br>Pa)                                                                            |                                                                                                         | Ash                                                                                                                |
| Ta                                                                         | mpressive                                                                                                                      | ys Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.                                                                                                                                                                                                                                 | Weight<br>8.78<br>8.86<br>9.06<br>rage Strer                                                                                                                                                                                                                                    | MPa)<br>14-]<br>(kg)<br>ngth (in spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>eimen for 14 da<br>.w.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with dif<br>ESULT<br>Compr<br>Compr<br>y & 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ressive<br>29<br>37<br>34<br>33<br>Nano S                                                                                                                                                         | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silica & 1<br>Pa)                                                                            | 5% Fly                                                                                                  | Ash                                                                                                                |
| Table: Con<br>Sample                                                       | mpressive<br>weight<br>kg                                                                                                      | vs Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength                                                                                                                                                                                                                     | Weight (1)<br>Weight (1)<br>8.78<br>8.86<br>9.06<br>rage Strer<br>trade plain                                                                                                                                                                                                   | MPa)<br>14-1<br>(kg)<br>ngth (1<br>n spec<br>1% b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with dif<br>ESULT<br>Compr<br>Compr<br>y & 0%<br>weight<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton                                                                                                                    | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silica & 1 Pa) weight kg                                                                     | 5% Fly<br>2.5% b.<br>load<br>ton                                                                        | Ash<br>w.c<br>Comp.<br>strength                                                                                    |
| Table: Con<br>Sample<br>S-1                                                | mpressive                                                                                                                      | vs Com                                                                                                                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.                                                                                                                                                                                                                                 | Weight (1)<br>Weight (1)<br>8.78<br>8.86<br>9.06<br>rage Strer<br>frade plain<br>weight                                                                                                                                                                                         | MPa)<br>14-]<br>(kg)<br>hgth (kg)<br>n spec<br>1% b<br>load<br>ton<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | with dif<br>ESULT<br>Compr<br>Compr<br>y & 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>Ioad                                                                                                                           | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>iilica<br>v.c<br>Comp.<br>strength<br>41.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Silica & 1<br>Pa)                                                                            | 5% Fly<br>2.5% b.<br>load                                                                               | Ash<br>w.c<br>Comp.                                                                                                |
| Table: Con<br>Sample                                                       | mpressive                                                                                                                      | vs Com<br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u>                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength                                                                                                                                                                                                                     | Weight (1)<br>Weight (1)<br>8.78<br>8.86<br>9.06<br>rage Strer<br>frade plain<br>weight<br>kg                                                                                                                                                                                   | MPa)<br>14-]<br>(kg)<br>ngth ((<br>n spec<br>1% b<br>load<br>ton<br>92<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with dif<br>ESULT<br>Compr<br>Compr<br>y & 0%<br>weight<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton                                                                                                                    | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silica & 1<br>Pa)<br>weight<br>kg<br>9.81<br>9.56                                            | 5% Fly<br>2.5% b.<br>load<br>ton                                                                        | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856                                                                |
| Table: Con<br>Sample<br>S-1                                                | mpressive<br>weight<br>kg<br>9.36                                                                                              | vs Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                   | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752                                                                                                                                                                                                           | weight in (1)<br>Weight 8.78<br>8.86<br>9.06<br>rage Stree<br>rade plain<br>weight<br>kg<br>9.78                                                                                                                                                                                | MPa)<br>14-]<br>(kg)<br>hgth (kg)<br>n spec<br>1% b<br>load<br>ton<br>92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | with dif<br>ESULT<br>Compr<br>Compr<br>y & 0%<br>weight<br>kg<br>9.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95                                                                                                              | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>iilica<br>v.c<br>Comp.<br>strength<br>41.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Silica & 1<br>Pa)<br>weight<br>kg<br>9.81                                                    | 5% Fly<br>2.5% b.<br>load<br>ton<br>93                                                                  | Ash<br>w.c<br>Comp.<br>strength<br>40.548                                                                          |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3                                  | mpressive<br>weight<br>kg<br>9.36<br>9.13                                                                                      | vs Com<br>S<br>Streng<br>D.5% b.<br>load<br>ton<br>82<br>87<br>92                                                                                         | Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 C<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932                                                                                                                                                                                                                  | weight<br>8.78<br>8.86<br>9.06<br>rage Strer<br>rade plain<br>weight<br>kg<br>9.78<br>9.41                                                                                                                                                                                      | MPa)<br>14-<br>(kg)<br>ngth (kg)<br>ngth                                                                                                                                                                                                                                                       | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | with dif<br>ESULT<br>Compr<br>Compr<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99                                                                                                  | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.717<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.008<br>.496<br>.496<br>.496<br>.496<br>.496<br>.496<br>.496<br>.496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Silica & 1<br>Pa)<br>weight<br>kg<br>9.81<br>9.56                                            | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97                                                      | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856                                                                |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng                                                                | vs Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                   | Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>gth of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93                                                                                                                                                                                              | weight<br>kg<br>9.78<br>9.78<br>9.06<br>rage Strer<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre                                                                                                                                                                          | MPa)<br>14-1<br>(kg)<br>ngth (kg)<br>ngth (kg)<br>ngth (kg)<br>1% b<br>10ad<br>ton<br>92<br>95<br>96<br>ength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | with diff<br>ESULT<br>Compr<br>Compr<br>Aveight<br>kg<br>9.84<br>9.67<br>9.96<br>Av. Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>97<br>99<br>ength                                                                                   | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Silica & 1<br>Pa)<br>Pa)<br>weight<br>kg<br>9.81<br>9.56<br>9.88<br>Av. Stru                 | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength                                             | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng                                                                | vs Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                   | Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>gth of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93                                                                                                                                                                                              | weight<br>kg<br>9.78<br>9.78<br>9.06<br>rage Strer<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre                                                                                                                                                                          | MPa)<br>14-1<br>(kg)<br>hgth (kg)<br>hgth                                                                                                                                                                                                                                                      | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856<br>41.13<br>of M30 Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | with dif<br>ESULT<br>Compr<br>Compr<br>Veight<br>kg<br>9.84<br>9.67<br>9.96<br>Av. Stree<br>with dif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>97<br>99<br>ength                                                                                   | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Silica & 1<br>Pa)<br>Pa)<br>weight<br>kg<br>9.81<br>9.56<br>9.88<br>Av. Stru                 | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength                                             | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng                                                                | vs Com<br>s Com<br>s Streng<br>0.5% b.<br>load<br>ton<br>82<br>87<br>92<br>gth<br>vys Con                                                                 | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>npressive Str                                                                                                                                                             | weight<br>kg<br>9.78<br>9.78<br>9.06<br>rage Strer<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre                                                                                                                                                                          | MPa)<br>14-<br>(kg)<br>(kg)<br>ngth (<br>n spect<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | with dif<br>ESULT<br>Compr<br>Compr<br>Very & 0%<br>Very & 0% | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9                                                                             | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>% of Nano-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silica & 1<br>Pa)<br>Weight<br>kg<br>9.81<br>9.56<br>9.88<br>Av. Stro<br>Silica & 1          | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength                                             | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng                                                                | vs Com<br>s<br>s<br>s<br>s<br>s<br>treng<br>0.5% b.<br>load<br>ton<br>82<br>87<br>92<br>gth<br>sys Con                                                    | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.                                                                                                                                               | weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stree<br>rength in (<br>Weight                                                                                                                                                                                                      | MPa)<br>14<br>(kg)<br>(kg)<br>ngth ((<br>n spec<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856<br>41.13<br>o of M30 Grade<br>DAY TEST RI<br>Load (tonne)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with dif<br>ESULT<br>Compr<br>Compr<br>Very & 0%<br>Very & 0% | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9                                                                             | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>bilica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>% of Nano-S<br>Strength (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silica & 1<br>Pa)<br>Weight<br>kg<br>9.81<br>9.56<br>9.88<br>Av. Stro<br>Silica & 1          | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength                                             | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng                                                                | vs Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                   | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>npressive Str<br>Sample No.<br>Specimen 1                                                                                                                                 | weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stree<br>ength in (<br>Weight<br>8.82                                                                                                                                                                                               | MPa)<br>14-]<br>(kg)<br>(kg)<br>ngth ((<br>n spec<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-]<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>timen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with dif<br>ESULT<br>Compr<br>Compr<br>Very & 0%<br>Very & 0% | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9                                                                             | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008 | Silica & 1<br>Pa)<br>Weight<br>kg<br>9.81<br>9.56<br>9.88<br>Av. Stro<br>Silica & 1          | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength                                             | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng                                                                | vs Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                   | pressive Stree<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>gth of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>npressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2                                                                                                                 | weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stree<br>ength in (<br>Weight<br>8.82<br>8.89                                                                                                                                                                                       | MPa)<br>14-<br>(kg)<br>(kg)<br>ngth ((<br>n spec<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>timen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | with dif<br>ESULT<br>Compr<br>Compr<br>Very & 0%<br>Very & 0% | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38                                                | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>% of Nano-S<br>Strength (M<br>.392<br>.804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silica & 1<br>Pa)<br>Weight<br>kg<br>9.81<br>9.56<br>9.88<br>Av. Stro<br>Silica & 1          | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength                                             | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng                                                                | vs Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                   | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>gth of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3                                                                                                    | weight<br>8.78<br>8.86<br>9.06<br>rage Strer<br>rade plain<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre<br>rength in (<br>Weight<br>8.82<br>8.89<br>9.06                                                                                                                 | MPa)<br>14-]<br>(kg)<br>ngth (kg)<br>ngth (kg)<br>1% b<br>10ad<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-]<br>(kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>timen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with dif<br>ESULT<br>Compr<br>Compr<br>Very & 0%<br>Very & 0% | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35                                          | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>% of Nano-S<br>Strength (M<br>.392<br>.804<br>.752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Silica & 1<br>Pa)<br>Weight<br>kg<br>9.81<br>9.56<br>9.88<br>Av. Stro<br>Silica & 1          | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength                                             | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng<br>ble: 14 da                                                  | vs Com<br>s<br>s<br>Streng<br>0.5% b.<br>load<br>ton<br>82<br>87<br>92<br>gth<br>vys Com                                                                  | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave                                                                                              | weight<br>8.78<br>8.86<br>9.06<br>rage Strer<br>rade plain<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre<br>rength in (<br>Weight<br>8.82<br>8.89<br>9.06<br>rage Strer                                                                                                   | MPa)<br>14-]<br>(kg)<br>ngth (kg)<br>ngth (m<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-]<br>(kg)<br>ngth (kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82<br>MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with diff<br>ESULT<br>Compr<br>Compr<br>Veight<br>kg<br>9.84<br>9.67<br>9.96<br>Av. Street<br>with diff<br>ESULT<br>Compr<br>Compr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35<br>35                                    | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>w.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>% of Nano-S<br>Strength (M<br>.392<br>.804<br>.752<br>.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silica & 1 Pa) Weight kg 9.81 9.56 9.88 Av. Str Silica & 1 Pa) Pa)                           | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength<br>5% Fly                                   | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56                                             |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng<br>ble: 14 da                                                  | vs Com<br>s Streng<br>0.5% b.<br>load<br>ton<br>82<br>87<br>92<br>gth<br>vys Con<br>s Streng<br>(s)<br>(s)<br>(s)<br>(s)<br>(s)<br>(s)<br>(s)<br>(s)      | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>npressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>ompressive Str                                                                            | weight<br>8.78<br>8.86<br>9.06<br>rage Strer<br>rade plain<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre<br>rength in (<br>Weight<br>8.82<br>8.89<br>9.06<br>rage Strer                                                                                                   | MPa)<br>14-]<br>(kg)<br>hgth ()<br>n spect<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-]<br>(kg)<br>hgth ()<br>f M30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82<br>MPa)<br>O Grade plain s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with diff<br>ESULT<br>Compr<br>Compr<br>Veight<br>kg<br>9.84<br>9.67<br>9.96<br>Av. Street<br>with diff<br>ESULT<br>Compr<br>Compr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35<br>35<br>for 28                          | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>43.164<br>42.292<br>% of Nano-S<br>Strength (M<br>.392<br>.804<br>.752<br>.316<br>days & 0% N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Silica & 1 Pa) Weight Kg 9.81 9.56 9.88 Av. Stro Silica & 1 Pa) Nano Silic                   | 5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength<br>5% Fly                                   | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56<br>Ash                                      |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera<br>Ta                   | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng<br>ble: 14 da                                                  | vs Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s                                                                                   | pressive Stree<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>ompressive S                                                                             | weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stree<br>rength in (<br>Weight<br>8.82<br>8.89<br>9.06<br>rage Stree<br>Strength o                                                                                                                                                  | MPa)<br>14-<br>(kg)<br>hgth ((<br>n spec)<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-<br>(kg)<br>(kg)<br>hgth ((<br>of M30<br>1% b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>cimen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82<br>MPa)<br>O Grade plain s<br>.w.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | with dif<br>ESULT<br>Compr<br>Compr<br>Veight<br>kg<br>9.84<br>9.67<br>9.96<br>Av. Straction<br>ESULT<br>Compr<br>Compr<br>Compr<br>Av. Straction<br>Compr<br>Substrate<br>Substrate<br>Substrate<br>Compr<br>Compr<br>Substrate<br>Compr<br>Substrate<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr<br>Compr                                                                                                                 | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35<br>35<br>for 28<br>2% b.v                      | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>.5ilica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>43.164<br>42.292<br>% of Nano-S<br>Strength (M<br>.392<br>.804<br>.752<br>.316<br>days & 0% I<br>v.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silica & 1 Pa) Weight Kg 9.81 9.56 9.88 Av. Stro Silica & 1 Pa) Nano Silic                   | 2.5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength<br>5% Fly<br>ca<br>2.5% b.                | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56<br>Ash<br>w.c                               |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera                         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng<br>ble: 14 da                                                  | vs Com<br>s<br>s<br>streng<br>0.5% b.<br>load<br>ton<br>82<br>87<br>92<br>gth<br>uys Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s | pressive Stree<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>ompressive Str<br>Sample No.                                                             | weight in (1)<br>Weight in (1)<br>8.78<br>8.86<br>9.06<br>rage Stree<br>irade plain<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stree<br>rength in (1)<br>Weight in (1)<br>8.82<br>8.89<br>9.06<br>rage Stree<br>Strength o<br>Strength o                                    | MPa)<br>14-]<br>(kg)<br>ngth ((<br>n spec<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-]<br>(kg)<br>ngth ((<br>of M30<br>1% b<br>load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>5<br>5<br>5<br>6<br>6<br>78<br>MPa)<br>5<br>5<br>7<br>8<br>7<br>8<br>7<br>8<br>4<br>7<br>8<br>7<br>8<br>7<br>8<br>4<br>1.12<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.42<br>4<br>1.56<br>4<br>1.13<br>0 of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82<br>MPa)<br>0 Grade plain s<br>.w.c | with dif<br>ESULT<br>Compr<br>Compr<br>Veight<br>kg<br>9.84<br>9.67<br>9.96<br>Av. Street<br>with dif<br>ESULT<br>Compr<br>Compr<br>Compr<br>Specimen<br>weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35<br>for 28<br>2% b.v<br>load                    | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silica & 1 Pa) Weight Rg 9.81 9.56 9.88 Av. Str Silica & 1 Pa) Nano Silic weight             | 2.5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength<br>5% Fly<br>ca<br>2.5% b.<br>load        | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56<br>Ash<br>w.c<br>Comp.                      |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera<br>Ta<br>Sample         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng<br>ble: 14 da<br>the streng<br>ble: 14 da                      | vs Com<br>s<br>s<br>streng<br>0.5% b.<br>load<br>ton<br>82<br>87<br>92<br>gth<br>uys Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s | pressive Stree<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>ompressive Str<br>Strength                                                               | weight<br>8.78<br>8.86<br>9.06<br>rage Strer<br>rade plain<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre<br>rength in (<br>Weight (<br>8.82<br>8.89<br>9.06<br>rage Strer<br>Strength o<br>Strength o                                                                     | MPa)<br>14-]<br>(kg)<br>ngth ((<br>n spec<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-]<br>(kg)<br>ngth (1<br>of M30<br>1% b<br>load<br>ton<br>1% b<br>load<br>ton<br>92<br>95<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>timen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82<br>MPa)<br>0 Grade plain s<br>.w.c<br>Comp.<br>strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with dif<br>ESULT<br>Compr<br>Compr<br>Veight<br>kg<br>9.84<br>9.84<br>9.67<br>9.96<br>Av. Street<br>with dif<br>ESULT<br>Compr<br>Compr<br>Compr<br>Specimen<br>weight<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35<br>for 28<br>2% b.v<br>load<br>ton             | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008 | Silica & 1 Pa) Weight Rg 9.81 9.56 9.88 Av. Str Silica & 1 Pa) Nano Silic Weight Rg          | 2.5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength<br>5% Fly<br>ca<br>2.5% b.<br>load<br>ton | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56<br>Ash<br>w.c<br>Comp.<br>strength          |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera<br>Ta<br>Sample<br>S-1  | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng<br>ble: 14 da<br>ble: 14 da<br>Tr<br>(<br>weight<br>kg<br>9.39 | vs Com<br>S<br>Streng<br>S<br>Streng<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                     | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>gth of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>ompressive Str<br>Sample No.<br>Specimen 3<br>Ave<br>ompressive Str<br>Specimen 3<br>Ave | weight in (1<br>8.78<br>8.86<br>9.06<br>rage Strer<br>irade plain<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stre<br>ength in (1<br>8.82<br>8.89<br>9.06<br>rage Strer<br>Strength of<br>weight<br>kg<br>9.91                                                               | MPa)<br>14-<br>(kg)<br>14-<br>(kg)<br>14-<br>(kg)<br>10 ad<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-<br>(kg)<br>(kg)<br>1% b<br>load<br>1% b<br>load<br>1% b<br>10 ad<br>1% b<br>10 ad<br>10 ad | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>timen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82<br>MPa)<br>0 Grade plain s<br>.w.c<br>Comp.<br>strength<br>40.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with dif<br>ESULT<br>Compi<br>Compi<br>Veight<br>kg<br>9.84<br>9.67<br>9.96<br>Av. Street<br>e with dif<br>ESULT<br>Compi<br>Compi<br>Specimen<br>weight<br>kg<br>9.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35<br>35<br>for 28<br>2% b.v<br>load<br>ton<br>97 | % of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>Silica<br>v.c<br>Comp.<br>strength<br>41.42<br>42.292<br>43.164<br>42.292<br>% of Nano-S<br>Strength (M<br>.392<br>.804<br>.752<br>.316<br>days & 0% I<br>v.c<br>Comp.<br>strength<br>42.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Silica & 1 Pa) Pa) Weight kg 9.81 9.56 9.88 Av. Str Silica & 1 Pa) Nano Silic Weight kg 9.91 | 2.5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength<br>5% Fly<br>2.5% b.<br>load<br>ton<br>95 | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56<br>Ash<br>w.c<br>Comp.<br>strength<br>41.42 |
| Table: Con<br>Sample<br>S-1<br>S-2<br>S-3<br>Avera<br>Ta<br>Sample         | mpressive<br>weight<br>kg<br>9.36<br>9.13<br>8.98<br>age Streng<br>ble: 14 da<br>the streng<br>ble: 14 da                      | vs Com<br>s<br>s<br>streng<br>0.5% b.<br>load<br>ton<br>82<br>87<br>92<br>gth<br>uys Com<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s<br>s | pressive Stre<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>th of M30 G<br>w.c<br>Comp.<br>strength<br>35.752<br>37.932<br>40.112<br>37.93<br>mpressive Str<br>Sample No.<br>Specimen 1<br>Specimen 2<br>Specimen 3<br>Ave<br>ompressive Str<br>Strength                                                                | weight in (1)<br>Weight in (1)<br>8.78<br>8.86<br>9.06<br>rage Stree<br>irade plain<br>weight<br>kg<br>9.78<br>9.41<br>9.84<br>Av. Stree<br>rength in (1)<br>Weight in (1)<br>Weight in (1)<br>8.82<br>8.89<br>9.06<br>rage Stree<br>Strength of<br>Strength of<br>weight<br>kg | MPa)<br>14-]<br>(kg)<br>ngth ((<br>n spec<br>1% b<br>load<br>ton<br>92<br>95<br>96<br>ength<br>(MPa)<br>28-]<br>(kg)<br>ngth (1<br>of M30<br>1% b<br>load<br>ton<br>1% b<br>load<br>ton<br>92<br>95<br>96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>68<br>86<br>78<br>MPa)<br>timen for 14 da<br>.w.c<br>Comp.<br>strength<br>40.112<br>41.42<br>41.42<br>41.856<br>41.13<br>of M30 Grade<br>DAY TEST RI<br>Load (tonne)<br>72<br>89<br>82<br>MPa)<br>0 Grade plain s<br>.w.c<br>Comp.<br>strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | with dif<br>ESULT<br>Compr<br>Compr<br>Veight<br>kg<br>9.84<br>9.84<br>9.67<br>9.96<br>Av. Street<br>with dif<br>ESULT<br>Compr<br>Compr<br>Compr<br>Specimen<br>weight<br>kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ferent 9<br>ressive<br>29<br>37<br>34<br>33<br>Nano S<br>2% b.v<br>load<br>ton<br>95<br>97<br>99<br>ength<br>ferent 9<br>ressive<br>31<br>38<br>35<br>for 28<br>2% b.v<br>load<br>ton             | 6 of Nano-S<br>Strength (M<br>.648<br>.496<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.717<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008<br>.008 | Silica & 1 Pa) Pa) Weight Rg 9.81 9.56 9.88 Av. Str Silica & 1 Pa) Nano Silic Weight Rg      | 2.5% Fly<br>2.5% b.<br>load<br>ton<br>93<br>96<br>97<br>ength<br>5% Fly<br>ca<br>2.5% b.<br>load<br>ton | Ash<br>w.c<br>Comp.<br>strength<br>40.548<br>41.856<br>42.292<br>41.56<br>Ash<br>w.c<br>Comp.<br>strength          |

Average Strength38.94Av. Strength41.856Av. Strength42.728Av. Strength42.292Table 4.12: 28 days Compressive Strength in (MPa) of M30 Grade with different % of Nano-Silica & 15% Fly Ash


A. Comparison of Compressive Strength Results: The change in compressive strength for the blended sample (in %) for 7, 14 and 28 day is shown in Table respectively. A graphical representation of this result is shown in Fig. The change in compressive strength from 7 days 14 days to 28 day is shown.

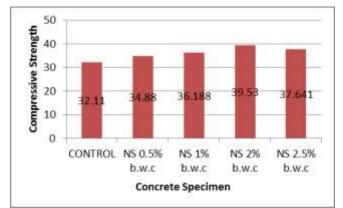
| lifferent % of Nano Nano- | 1                 | 7days                    | 14                | 4 days                   | 28 days           |                          |  |
|---------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|--|
| Silica & 15% Fly Ash      | strength<br>(mpa) | increase in strength (%) | strength<br>(mpa) | increase in strength (%) | strength<br>(mpa) | increase in strength (%) |  |
| CONTROL                   | 21.94             | -                        | 22.236            | -                        | 31.68             | -                        |  |
| NS 0.5% b.w.c             | 26.16             | 19.23                    | 27.468            | 23.52                    | 32.99             | 4.13                     |  |
| NS 1% b.w.c               | 27.76             | 26.52                    | 31.392            | 41.17                    | 37.06             | 16.98                    |  |
| NS 2% b.w.c               | 30.37             | 38.42                    | 34.444            | 54.90                    | 39.09             | 23.39                    |  |
| NS 2.5% b.w.c             | 29.50             | 34.45                    | 33.42             | 50.30                    | 38.077            | 20.19                    |  |


Table 4.13: Comparison of compressive strength for M20 Grade and 15% of Fly-ASH of In Geopolymer concrete

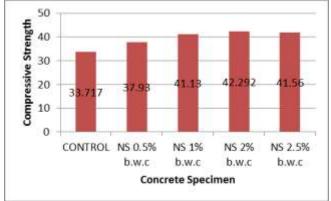


(a) compressive strength in 7days with M20 Grade and 15% of Fly-ASH of Geopolymer concrete




(b) compressive strength in 14 days with M20 Grade and 15% of Fly-ASH of Geopolymer concrete




(c) compressive strength in 28 days with M20 Grade and 15% of Fly-ASH of Geopolymer Concret

| different % of Nano-Silica | 7                 | days                     | 14                | 4 days                   | 28 days           |                          |  |
|----------------------------|-------------------|--------------------------|-------------------|--------------------------|-------------------|--------------------------|--|
| & 15% Fly Ash              | strength<br>(mpa) | increase<br>strength (%) | strength<br>(mpa) | increase<br>strength (%) | strength<br>(mpa) | increase<br>strength (%) |  |
| CONTROL                    | 32.11             | -                        | 33.717            | -                        | 35.316            | -                        |  |
| NS 0.5% b.w.c              | 34.88             | 8.62                     | 37.93             | 12.49                    | 38.94             | 10.26                    |  |
| NS 1% b.w.c                | 36.188            | 12.70                    | 41.13             | 21.98                    | 41.856            | 18.51                    |  |
| NS 2% b.w.c                | 39.53             | 23.11                    | 42.292            | 25.43                    | 42.728            | 20.98                    |  |
| NS 2.5% b.w.c              | 37.641            | 17.22                    | 41.56             | 23.26                    | 42.292            | 19.75                    |  |


Table: Comparison of compressive strength for M30 Grade and 15% of Fly-ASH of Geopolymer concrete



(a) compressive strength in 7days with M30 Grade and 15% of Fly-ASH of Geopolymer concrete



(b) compressive strength in 7days with M30 Grade and 15% of Fly-ASH of Geopolymer concrete



(c) compressive strength in 7days with M30 Grade and 15% of Fly-ASH of Geopolymer concrete

The tables and graphs show that there is an improvement in the early strength of Geopolymer concrete blended with Fly-Ash Mix Nano-Silica but later the increase in strength is subdued.

## V. CONCLUSION

From the test results, the conclusions are justified in this section. The conclusions drawn are:

 From the compressive strength results, it can be observed that increase in compressive strength of Geopolymer concrete is observed on addition of a certain minimum quantity of Fly-Ash Mix nano SiO2. The increase in strength is maximum for NS 2% b.w.c and least for NS 0.5% b.w.c.  On addition of Fly-Ash Mix SiO2 there is a substantial increase in the early-age strength of Geopolymer concrete compared to the 28 day increase in strength.

## REFERENCES

- Ali Nazari, Shadi Riahi, Shirin Riahi, Saydeh Fatemeh Shamekhi and A. Khademno. (2010). Mechanical properties of cement mortar with Al2O3 Fly-Ash Mixparticles. *Journal of American Science* 6(4), 94-97.
- [2] 2. Alireza Naji Givi, Suraya Abdul Rashid, Farah Nora A. Aziz and Mohamad Amra Mohd Salleh (2010). Experimental investigation of the size effects of SiO2 Fly-Ash Mix particles on the mechanical properties of binary blended in Geopolymer concrete. *Composites: Part B 41*, 673-677.
- [3] 3. G.Quercia and H.J.H.Brouwers (2010). Application of Fly-Ash MixNano-Silica (nS) in in Geopolymer concrete mixtures. 8th fib PhD symposium in Kgs. Lyngby, Denmark.
- [4] 4. M.S. Morsy, S.H. Alsayed and M. Aqel. (2010). Effect of Fly-Ash Mix clay on mechanical properties and microstructure of Ordinary Portland Cement mortar. *International Journal on Civil Engineering & Environmental Engineeering IJCEE-IJENS Vol. 10 No.* 01.
- [5] 5. Shekari, A. H. and Razzaghi, M. (2011). Influence of Fly-Ash Mixparticles on durability and mechanical properties of SCC with GGBFS as binder. *Energy and buildings Vol.* 43, 995-1002.
- [6] 6. Givi, A. N. and Rashid, S. A. (2011). The effect of lime solution on the properties of SiO2 Fly-Ash Mixparticles binary blended in Geopolymer concrete. *Composites (Part B) Vol. 42*, 562-569.
- [7] 7. Chahal, Navneet and Rafat Siddique (2012). Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of in Geopolymer concrete incorporating siloca fume. *Construction and Building Materials 37*, 645-651.
- [8] 8. A.M. Said, M.S. Zeidan, M.T. Bassuomi and Y. Tian. (2012). Properties of in Geopolymer concrete incorporating Fly-Ash Mix-Nano-Silica. *Construction and Building Materials* 36, 838-844.
- [9] 9. Heidari, A., and Tavakoli, D. (Sept 2012). A study of mechanical properties on ground ceramic powder in Geopolymer concrete incorporating Fly-Ash Mix SiO2 particles. *Construction and Building Materials Vol. 38*, 255-264.
- [10] 10. Navneet Chahal and Rafat Siddique (2013). Permeation properties of in Geopolymer concrete made with fly ash and Nano-Silica fume: Influence of ureolytic bacteria. *Construction and Building Materials* 49, 161-174.