
IJSRD - International Journal for Scientific Research & Development| Vol. 7, Issue 03, 2019 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 261

A Dynamic Real Time Car Sharing System

Abhilash Patel1 Raj Kunwar Singh2
1,2Department of Computer Science & Engineering

1,2IMS Engineering College, Ghaziabad, Uttar Pradesh, India

Abstract— This article presents the design and

implementation of a ride sharing application for a mobile

environment. It will enable users to share car rides in an

efficient and simple way. Use of this system should reduce

significantly the number of private cars on the roads,

providing ecological, economical, and social benefits. The

application is designed for "smartphones", thus enabling

implementation of the sharing in real time, from anywhere,

anytime. The application requires an algorithm for finding

sub-routes in a user-defined path, according to the number of

matched points along the path. This application differs from

the existing car sharing applications in several ways. The

article will describe both the system and the specific

differences from other softwares.

Keywords: Mobile Communication Systems, Real-Time and

Embedded Systems, Software Engineering for Internet

Projects, Location-Dependent and Sensitive

I. INTRODUCTION

Population growth and increasing population density,

particularly in metropolitan areas, have brought about an

increase in the number of vehicles on the roads, by a few

percentage points per year [1], [2] (3.6% increase in 2010

alone [3]). The cumulative effect of this phenomenon is

staggering. The main derivatives of this situation include (in

addition to direct economic expenditures on car maintenance,

insurance and fuel):

Traffic congestion – in USA drivers spend an

aggregated total of up to one month every year in traffic jams

[4]. This is the equivalent of the loss of a meaningful amount

of working days per year per person, with obvious

consequential significant economic damage [5]. Congestion

also brings about a huge waste of fuel, increased emission of

carbon dioxide and pollutants and severe environmental

damage. Traffic jams have other implications on social or

driving behavior, health (stress, anxiety, blood pressure and

psychological effects [6].

Parking – is another obvious problem in large,

crowded cities. Various solutions have been implemented or

proposed - e.g. "fast lane", which offers free passage to

vehicles with 4 or more passengers. In London, a heavy daily

fee is exacted from commuter cars entering the city center.

Public transportation – in some places the needs

of the population exceeds the availability of public

transportation, especially some developing countries. The

lack or inefficiency of public transportation in itself is a

stimulus to automobile purchases.

Environmental concerns – Congestion has

heightened the awareness of the importance of environmental

protection and there is a worldwide search for new, energy

efficient ways to manage our daily mobility. Unfortunately,

none of these efforts has made a significant contribution to

the situation.

The remaining structure of this article is as

following. In the next section we present some of the existing

car sharing applications and stress what has not already been

done in comparison to our work. Then in section III we

present our system and in section IV we present the design

and algorithm for our application. Specific details on the

implementation are provided in section V. Finally a whole

section on the future works and improvements is presented in

section VI and section VII concludes the article.

II. RELATED WORK

Today, there are some different programs for car sharing, and

these can be divided into two main categories – static and

dynamic applications. Amey [7] described dynamic ride

sharing as:"a single or recurring rideshare trip with no fixed

schedule, organized on a one-time basis, with matching of

participants occurring as little as a few minutes before

departure or as far in advance as the evening before a trip is

scheduled to take place”. Static method is one that requires

users to wait a while for an answer, sometimes even for a few

days or weeks. This is a crucial difference when it comes to

the usage in real life transportation. Both methods are in use

today although dynamic ride sharing is often referred to as a

new, improved ride sharing technique in comparison to the

outdated static method.

A static car sharing method is mostly common in

dedicated websites while mobile applications usually use

dynamic method.

A. Static Ride Sharing Applications

A static ride sharing application consists of an interface where

a user is invited to offer or demand a ride sharing, while other

users could see his request. A successful match for a ride is

one where a user finds another user that matches his request,

based on what they published and described.

The key to success of these applications is that they

gather a large amount of data from users, which gives each

user the ability to narrow his search for passengers or for a

ride. Web applications can display all their data at once and

their search options are many and diverse (by determining

more accurate preferences, depending on the specific

website), while mobile applications have to display less data

at a given time without interrupting the intuitively and

functionality of the application. One mainly used feature of

ride-sharing is the forum, where users can tell about their

experience and exchange info, tips, and recommendations.

In this context, several static applications for ride

sharing have been developed around the world, but they share

same characteristics. Here are some examples for operative,

widely used, static, ride sharing programs, that make use of

some or all the features mentioned above.

“Backseatsurfing.com” is a carpool / hitchhiking

website that divides its page layout to new rides, free rides,

and the last minutes rides. Besides giving the option to find a

ride, the site is meant to be a social network for hitchhikers,

including profiles, galleries, and videos. “Digihitch.com” is

another website application which has a platform for

A Dynamic Real Time Car Sharing System

 (IJSRD/Vol. 7/Issue 03/2019/067)

 All rights reserved by www.ijsrd.com 262

hitchhiking, mainly between countries in Europe. In this site

you cannot see the exact departure place or even the city,

without contacting the driver first.

1) Drawbacks of Static Ride Sharing Applications:

There are a few disadvantages for these systems. First of all,

it is a static method that does not work in real time. For

example, if a driver is being delayed or decided that he wants

to postpone his trip, he will not always come back to his

published offer to update it, which will cause the application

or website to be unreliable and outdated. If a driver enters his

trip in the website as a regular trip that he does every week,

but occasionally it does happens that he skips a week, or

changes his path- again, his offer / request becomes outdated.

In addition, in websites, there is no direct interaction between

users via the website itself, but only with emails, while it may

take some time for the users to view the messages they

receive, and especially if there are any last minute changes.

B. Dynamic Ride Sharing Applications

The advantages of the smart mobile phone are many. First of

all, the mobile phone is carried by a person at all times, and

so the user can access and update his information at any given

time. With smartphones users can easily pass data to others

without the need to get to the nearest computer. In addition,

the embedded GPS chip allows detecting one’s current exact

location and velocity, which can be very useful when it comes

to location- based algorithms and applications. Due to these

advantages, some dynamic ride sharing applications have

been developed which rely on the above characteristics.

Another example of mobile ride sharing application

is the well-known, Avego Driver [8]. This is a real-time ride

sharing application combined with automated payment

transaction management that uses web accounts as the

method of payment to drivers by the passengers, while the fee

is determined by the distance they shared during the trip.

Users can see each other’s last activities, and all the rides

around them, even before specifying a destination. On the

other hand, for a match between a driver and passengers to be

done, they need to insert the exact same route, otherwise the

application might miss the connection, and the passenger

needs to choose from a list of pre-defined pick up and drop

off spots. i.e., there is a difficulty in giving a ride just for a

part of the way, as we would like to allow in our application.

Zebigo [9] is another known but different application that

serves the same purpose. It is simple to work with and

understandable, but users cannot provide as a destination or

origin, a general name of a place such as a city or interchange,

but instead they can only enter a specific detailed address,

which might be less convenient when fast and easy usage is

required. This requirement could prevent people from using

the application, while users tend to prefer a more flexible and

convenient one. The less limitations it has, the more users

using it.

III. OUR SYSTEM

A. Description

The proposed system is a dynamic car-sharing application.

This application differs from others by that it finds

overlapping of routes and analyzing the longest common

route between a few given routes. It does not rely on a similar

origin or destination to match routes, but actually finds a

correlation between the paths, even when they start and end

elsewhere. This allows us to find matching trips for users,

even for a part of the way.

The system works as followed. After downloading

the soft-ware and registering as a user (see section III-F for

details on how to obtain a registration code), the user enters

his personal details that include different identifiers for the

program to relate to later on when combining routes. In

addition, the user can enter his car details which will be save

and will appear as the default details of the user’s car when

creating a route. After creating a user profile, the user chooses

between two views- "driver" and "passenger". The driver

view is in general to create a route and the passenger view is

to join one.

B. Driver view

The driver view and screen has two main options, creating a

new route or updating a route. When pressing to create a new

route, the driver needs to enter all the information that is

requested for the route. If the driver had saved a route in the

past or had some details saved before, they will appear as

default. Driver will need to enter the origin (default will be

his location) and the destination, and the time of departure.

The other compulsory details are car model and color, license

plate number (so that the passenger will be able to clearly

identify the driver at the meeting point), smoking / non

smoking and special requests (e.g. only male/female

passengers, no food in the car...). The rest of the details will

be at start with default values unless the driver defined

something else (e.g. number of available seats will be 3).

After entering the details, a map (of the chosen route) will

appear on the screen. The driver can then choose to alter the

route, and different routes will be displayed.

After choosing the desired route, the data of this

specific ride will be saved in the database. From this point on,

this ride will be visible to all users. When a passenger wishes

to join that ride, the driver will be noticed and could accept or

reject the request. At a specific time before the start of the

ride, the driver will receive a message showing the places he

needs to stop at. Drivers can also save their common routes

and departure times for future use. This is the driver’s point

of view.

C. Passenger view

When looking for a ride, a passenger needs to enter his source

location (default value being his current place deter-mined by

GPS), destination location and desired departure time. Then

the screen will display all optional rides sorted by the

algorithm used by the system to find the best match between

the routes (defined further in section V-A). The passenger

will only see rides that are relevant for him. After choosing a

route and a meeting point from where the passenger will join

the car, the number of available seats for this ride in the

database will decrease by one. A ride reaching zero available

seats will not appear anymore.

D. Interaction between users scenario

The way the application works is described in more details in

the sequence diagram in Fig. 1. In this figure, we show the

process of interaction between the users and the system, and

A Dynamic Real Time Car Sharing System

 (IJSRD/Vol. 7/Issue 03/2019/067)

 All rights reserved by www.ijsrd.com 263

what the system performs in order to match and find a ride

the users could share. After the driver enters his origin and

destination, the system stores the selected route, and waits for

a passenger to perform a search for a ride according to his

own desired locations. After finding the suitable routes for the

given passenger’s path, we have to compare these routes to

the drivers’ routes, in order to find the most suitable match,

according to destination, departure time, and estimated arrival

time. The system then activates an algorithm for comparing

routes and sub-routes (see further in section V-A), and if it

finds a match, the system will connect those users and

monitor the trip (until the passenger indicates that he went off

the vehicle and that the ride was successful). We can see that

a driver has to approve his final route, because there could be

many available routes between the same origin and

destination, and he might want to go through a certain path

rather than the other, unlike the passenger who doesn’t

usually have a preferred route.

This diagram show only one driver and one

passenger, but the same process will take place when it comes

to the use of multiple users.

E. Multiple users

The idea of the relations between multiple drivers and

passengers is described in the next two diagrams. In Fig. 2 it

is shown that all users’ data, drivers and passengers, is stored

in the database. Each driver in the diagram has its own arrow

color to demonstrate a different entry in the routes table. The

passengers can connect to one of these drivers and will give

them the same unique symbol their driver has (in our case the

same color of arrow). In Fig.3 we can see that a passenger

that was previously matched with a driver, interacts with his

driver and could join his ride at an accepted location along

the way.

F. Advantage of Our System

The advantages of our system are manifold:

1) The system can find a combined route between driver

and several passengers using an algorithm that was

specially developed for that purpose. Unlike other car

sharing applications, where the passenger needs to

choose from a list of drivers that can sometimes be

irrelevant for him, our application automatically

computes the best overlapped route that can be found.

The order of the routes displayed to the passenger derives

from the longest common path, the distance from the

origin and to the destination and a few more parameters

that are taken into consideration.

2) The GUI is designed to be as user-friendly as possible,

without interference to the user’s regular mobile

activities. When planning the algorithm we took into

consideration how to simplify the use and to decrease the

number of actions a user needs to perform in order to

achieve his goals.

3) Both driver’s and passenger’s locations are shown in real

time on the map. This feature provides users a more

liable and accurate use. When users can see each other

on the screen, it adds to users’ safety and to easier

recognition.

4) Personal security is an essential need, especially

considering the openness of the application and the

unidentified users behind the usernames. Our system

incorporates user- friendliness features along with

protecting privacy and ensuring security. One of these

features is the need of a registration code. After

downloading the application, a registration code must be

entered in order to activate the application. This

registration code can be obtained in one of several ways.

The most common one is by getting the code from a

friend, where the introducing friend is already a

registered member and has accumulated a certain amount

of credits, which allow him to generate registration codes

to distribute to others. Other ways are by belonging to all

sorts of communities that have been approved by the

system’s operators for the purposes of distributing

registration codes (student groups, companies, etc.)[7].

5) Recommended drop off locations can be displayed, or

could be added by the users themselves to make the

system more updated and dynamic.

G. Drivers Motivation

The motivation for drivers to offer car rides can be achieving

rating points (which will grant discounts and offers). Payment

Fig. 1: Sequence Diagram-matching a shared ride for a

driver and a passenger

Fig. 2: Matching Users’ Routes at the Database(shown in

same color of arrows)

A Dynamic Real Time Car Sharing System

 (IJSRD/Vol. 7/Issue 03/2019/067)

 All rights reserved by www.ijsrd.com 264

from passengers is another option (although not entirely al-

lowed everywhere, because of restrictions of insurance

policies). Businesses may encourage their employees

(financially) to use this system, which will reduce the number

of cars some companies have to provide to their workers, and

reduce their expenses on gas and transportation.

IV. SYSTEM DESIGN

The system is built in a client-server model, which allows us

to save all important and private information remotely on the

server, instead of locally on the mobile device. The device it-

self holds only user preferences. In order to make the software

simple, we designed it in a modular approach, in which the

components of the application are divided according to their

aim. The main component contains the matching algorithm,

and the ability to access the web service, and connect with

Google maps API. In addition, there are the part that is in

charge of the input / output stream from / to the database, and

the GUI section that handles the display, according to the

assumption that the software’s display has to be separated

from the logic or implementation of the application. The

relations between these parts are described in the following

object diagram (Fig. 4).This figure demonstrates the main

components of our system, and how the control

communicates with all other parts, such as the database (for

storing or retrieving data), the display (GUI), and other

mobile functions (such as the GPS). In Fig. 5 we present the

main part presented in Fig. 4 which is the control itself, but

divided into its main functionalities, which are: registration,

configuration, adding rides, searching for routes for defined

origin and destination, matching and binding routes, and

monitoring trips that are already on the way. All these

functions are called by the system management, while users

can address some functions, such as adding or searching

rides, and other functionalities will be processed by the

management itself, such as the matching routes function, and

monitoring.

Algorithm 1 Matching Route

1) driverUser getting user details from database

2) driverSource receive departure point of the driver

3) driverDestination receive destination point of the

driver

4) driverRoute[] CalculateStoppingPoints(driverSource,

driverDestination) {analyzing coordinates along the

path}

5) deviation get driver’s predefined maximum deviation

allowed from database

6) passengerUser getting user details from database

7) passengerSource receive departure point from the

passenger

8) passengerDestination receive destination from the

passenger

9) passengerRoute[]CalculateStoppingPoints(passengerSo

urce, passengerDestination)

for each 2 routes do {combining the passenger’s route to the

driver’s and the opposite}

point destination = route1.finalPoint, point meetingPoint =

null, point dropoffPoint=null, point i = route1.startPoint,

point j = route2.startPoint

for each point in route2 do

if distance(i,j) + distance(j,destination) deviation then

add to route1 point j after i, i = j, meetingPoint = j, j =

nextPoint()

else

dropoffPoint = i, j = nextPoint()

end if

store route1 in DB

end for

end for

for each route in DB do

route r = find longest route()

if r.distance driverRoute.distance+deviation then

finalRoute=r return

else

remove r

end if

Fig. 3: Passengers Join Their Corresponding Drivers

V. IMPLEMENTATION

The application was built in Eclipse IDE, using JAVA

language for Android based devices. It has been tested using

AVD manager emulator. We chose to use Android for

multiple reasons. First, it is supported by various types of

devices. Second, Android has reached 52.5% of the global

smartphone market share as of November 2011 [10]. Finally

because its open source approach, which grants us access to

the phone’s internal functionalities.

A. Algorithm

In this section we describe our algorithm (See Algorithm 1)

which receives two routes as inputs, and searches for the

longest similar path between both routes. This is done by

iterating and examining coordinates of those two routes and

storing the overlapping coordinates. While receiving Google

maps’s routes, there is no way of knowing all coordinates

along that route, and even if it would be so, it would take an

enormous amount of time and resources to calculate and

compare every single one of these points. Instead, we noticed

that Google only stops or starts new steps of the given route

when there has been any change- a turn has to be made, the

road number has changed, and so on. This concept narrows

down the number of coordinates that are a possible meeting

point between the users, to the amount of changes in either

the driver’s route or the passenger’s. The algorithm works bi-

directional: first, it matches the passenger’s given coordinates

to the driver’s coordinates, and then does to opposite. And for

further explanation: we start by establishing a new path for

the driver that starts as before, but when arrived to the nearest

A Dynamic Real Time Car Sharing System

 (IJSRD/Vol. 7/Issue 03/2019/067)

 All rights reserved by www.ijsrd.com 265

coordinate to the passenger’s first coordinate (according to

the distance between them), the path then changes and

appended with the passenger’s first coordinate. If that

deviation exceeds the driver’s predefined maximum

deviation, the path changes.

Fig. 4: Object Diagram

back, and we proceed to the passenger’s next coordinate and

try to add it instead. Otherwise, the driver’s new path now

composed of his original route with an additional coordinate

located as nearest as possible to the original path. The same

is done with all coordinates of the passenger’s route that do

not exceed from the driver’s predefined maximum distance

deviation. Because we cannot know whether the driver’s

original route passes by some coordinates of the passenger’s

route or if maybe it is the opposite, we have to do the above

calculation twice: once starting with the driver and afterwards

starting with the passenger. At the end, we will have a new

route containing elements from both original routes, which

will represent the easiest way to go from A to B with an

acceptable range of a detour meant for picking up or dropping

off a passenger. Adding the driver’s route coordinates that

exist in the passenger’s route (and thus extending the driver’s

route) while they are distant up to a defined distance away

from the driver’s original route is optional. The driver can

decide not to deviate at all by predefining that distance to

zero. The minimum requirement for a successful match is the

matching of at least two coordinates. The first matched point

will be defined as the advised meeting spot, and the last

corresponding point would be the preferred drop off point. If

they were no two matching points at least the algorithm will

return with no results.

B. Database

Our database is meant to store multiple users, and multiple

routes. The main table is the routes table. The routes received

from the Google maps API are stored after parsing in the form

of coordinates, while some may also have a specific name-

such as intersections, universities, etc. Each route is saved by

a unique id number and can store as many steps (locations

points along the route) as needed, as the route received from

Google is basically composed from a collection of these

multiple points. Each point is defined by its latitude and

longitude, which makes it possible for us not only to search

for correlation between two points from the table, but

Fig. 5: Usecase Diagram - The system’s main functions

also to know how far are they from each other, by using a

simple mathematic formula. This can be used in the case that

the points are close but not the same, and we would like the

program to look at them as the same point (up to a certain

radius around these points). The route table also contains a

reference to the driver’s details in the users table and as

people join the ride, a reference to their details as well (this is

stored in the "route users relation" table). The users table

saves all the data and status of the users, ratings, reviews, etc.

The groups table can help us create matches only between

users within the same group if necessary, and because each

user can be a member in more than one group, we save his

desired groups at a table called "group user rel". Another

tables, "route preferences" and "general preferences" deals

with users preferences for each ride or for their general

demands for all rides, respectively. The databases we used for

implementation is MySQL (for external storage on a local

server for now), and SQLite (for local storage on the device).

VI. FUTURE WORK

There are some research possibilities to further work that can

be added to the current application:

Voice recognition: How convenient would that be if we could

just talk to our phone and say in our own words: "I’m driving

from Memphis Tennessee to Chicago Illinois at 5pm, 2

available seats". Since our application is build in a modularly

way, it would be very easy to add unique and special features

like this. Using voice recognition will substantially increase

the use of people. As technology becomes more and more

advanced, we expect things to be faster and easier to handle.

Talking to a phone in a free manner is, generally speaking,

more user friendly, and will save him precious time.

Account Ratings: In order to increase and attract

more users the system must have a way to rate users with ratio

to their use of the application [11]. The more they use the

application the more benefits they should receive. Adding a

system that gives points for each drive, points for good

service to the hitch-hiker,will come into considerations when

the hitch-hiker enters his feedback from the drive. Each user

will have a score that will be taken into account in the way

the algorithm sorts the optimal rides for the passenger. On the

other hand, if there is a driver who either does not give good

service or drives in a dangerous way, hitch hiker can give him

low rating and that would be taken into consideration when

compiling the algorithm. We hope that in the future, high

ratings will grant drivers discounts and offers from businesses

A Dynamic Real Time Car Sharing System

 (IJSRD/Vol. 7/Issue 03/2019/067)

 All rights reserved by www.ijsrd.com 266

and coffee shops along the routes, which may increase the use

of this method.

Account Credits: The primary way to attract people

to use this application must consider the economy point of

view. Drivers spend a lot of money on gas. This is one of the

main reasons people refrain to take their own car for a long

ride. However, if the driver knows he will be sharing the

expenses with other hitch-hikers, it will give him a good

reason to take his car [12]. Seeing that the application is build

in a modularly way, adding the necessary code and data that

will give the users an option to share the expenses of the ride

is accessible.

Group Car sharing: Besides the usual rides that

individuals enter either as offers or requests, this system in

the future will contain the option to see rides by category. The

categories can be various occasions and special events such

as weddings, sports event, concerts and graduation

ceremonies, in addition to existing groups in our

implementation such as: friends, fellow students, work

associates, club members, etc.

VII. CONCLUSION

In this article we presented a design and implementation for

a new approach in developing mobile ride-sharing and

carpooling application. The application works in real-time

and matches car rides by comparing routes to find the longest

common path. Unlike ride sharing websites, which has to be

updated frequently by the users, does not contain interaction

between them, and does not supply enough information about

exact pickup or drop-off locations, and unlike other ride

sharing mobile applications that find matches only according

to the users’ origin and destination, in the above system there

are updates at real time, exact locations based on GPS

readings, interactions among the users, and algorithm that

enables the system to locate and match the best suitable ride

according to the users’ paths and coordinates along the way,

which allows users to share just parts of their ride. This

project demonstrates an algorithm that builds a new route

from two given routes dynamically, step-by-step, with

attention to the maximum preferred deviation from the

original route, and with error-correction when exceeding this

limitation. We believe that with the growing attention to

environmental issues, and as the density of transportation and

parking places continue to increase, there will be a greater

need and use in such algorithm, to the benefit of all.

REFERENCES

[1] OICA, “Automative production statistics,”

http://oica.net/category/production-statistics/,

International Organization of Motor Vehicle

Manufacturers, Tech. Rep., 2011.

[2] D. Tencer, “Number of cars worldwide surpasses 1

billion; can the world handle this many wheels?”

Huffington Post - Business, Aug. 2011. [Online].

Available:

http://www.huffingtonpost.ca/2011/08/23/car-

population_n_934291.html

[3] J. Sousanis, “World vehicle population tops 1 billion

units,” WARDSAUTO – The information center for and

about the global auto industry, Aug. 2011. [Online].

Available:http://wardsauto.com/ar/world_vehicle_popul

ation_110815/

[4] L. Yvkoff, “Drivers spending 1 month each year in

traffic,” CNET reviews, March 2011.

[5] “Estimating urban traffic and congestion cost trends for

australian cities,” Bureau of Transport and Regional

Economics , Department of Transport and Regional

Services, Australia, Working Paper 71.

[6] D. A. Hennessy, D. L. Wiesenthal, and P. M. Kohn, “The

influence of traffic congestion, daily hassles, and trait

stress susceptibility on state driver stress: An interactive

perspective1,” Journal of Applied Biobehavioral

Research, vol. 5, no. 2, pp. 162–179, 2000.

[7] M. Amey, “Real-time ridesharing: exploring the

opportunities and challenges of designing a technology-

based rideshare trial for the mit community,” Master’s

thesis, Massachusetts Institute of Technology, 2010.

[8] http://www.avego.com/.

[9] http://zebigo.com/.

[10] R. Cozza, C. Milanesi, A. Zimmermann, D. Glenn, A.

Gupta, H. J. D. L. Vergne, C. Lu, A. Sato, T. H. Nguyen,

and S. Shen, “Market share: Mobile communication

devices by region and country, 3q11,” Gartner, Tech.

Rep., Nov. 2011.

[11] S. Shirazi, T. Kubitza, F. Alt, B. Pfleging, and A.

Schmidt, WEtrans-port: A Context-based Ride Sharing

Platform, 2010, pp. 425–426.

[12] E. A. Deakin, K. Frick, and K. M. Shively, “Markets for

dynamic ridesharing? case of berkeley, california,”

University of California Trans-portation Center,

Working Papers, 2011.

