Review on Power Quality Improvement using DVR

Raj K Barvadiya¹ Vipul N Modi² Vivek D Sangani³
¹PG Student ²Associate Professor ³Assistant Professor
¹,²Department of Electrical Engineering
³DR. Subhash Technical
Campus, DR. Subhash Marg, Near Majewdi Gate via Junagadh, Gujarat, India

Abstract— The most observable topic in electrical engineering is power quality in present scenario. The occurrence of power quality problem in power network is done by using nonstandard voltage, frequency and current that result in a failure of end use equipment. The distribution network in occurs the major problem is voltage sag and swell. The voltage sag and swell are main parameter on which the improvement is must be needed. Voltage quality can be sufficiently improved in distribution electric power system by using a custom power device such as a dynamic voltage restorer (DVR). The Dynamic Voltage restorer (DVR) is fast, flexible and efficient solution to mitigate the voltage sag and voltage swell problems.

Keywords: DVR, Power System, PCC, Resonant Controllers, Closed loop Control

I. INTRODUCTION

The power systems are complex networks, in recent years the most common problem in power system is power quality. Power quality mainly depends on distribution system. The power quality is affected many problems which occur in transmission system and distribution system. Where hundreds of generating stations and thousands of load centers are interconnected through long power transmission and distribution networks. The primary requirement of consumers is the quality and reliability of power supply at various load centers is located. The power generation in some of the developed countries is very reliable; the quality of the supply is not so reliable [1].

The Voltage magnitude is one of the major factors that determine the quality of electrical power. In a present scenario distribution system is directly related to the power quality. The reason behind is that distribution system locates at the end of the power system and is directly connected to the customer. Because most of the electrical distribution network failures account for about 90% of the average customer interruptions and if any disturbance occur in the distribution system a huge amount of financial losses may happen with the consequent loss of productivity and competitiveness. [3]

The distribution systems in large number of nonlinear loads are connected, which directly affect to the quality of power supply. In the result of the nonlinear load, the purity of the waveform of supply is lost. Producing the many power quality problems Apart from nonlinear loads some system events; motor starting, both capacitor switching. The power quality problems such as voltage sag, voltage swells, Voltage Fluctuation, Voltage Unbalance, Transients, Frequency Variations, Interruptions and harmonics etc. Voltage sag and swells are considered the most severe disturbances to the industrial equipment such as motor drive. The electronic equipments are very sensitive loads against harmonics because their control is depending on peak value and zero crossing value of supplied voltage. They are regulating the all harmonic distortion [2].In three phase system voltage sag by nature are three phase event, which is the effect to the phase -to -phase voltages and phase-to-ground voltages both Power-quality in during fault condition, lightning strikes and other problems that affect to the line-voltage and current waveforms.

The recent advancements in power electronic devices, there are many possibilities to reduce these problems in the power system. One of them is the use of Flexible AC Transmission System (FACTS) devices. The connection of these devices in the power system helps in improving the power quality and reliability. Use of these FACTS devices like STATCOM, SSSC, IPFC and UPFC etc. all FACT device design for the improvement of power quality in transmission system. But now improvement of power quality in distribution system it is also known as custom power device. The main custom power device used for the power quality improvement is DSTATCOM, DVR, AF and UPQC etc. [3]

The custom power device DVR is used for the power quality improvement in the distribution system. There are many reasons why the DVR is preferred over the others. But the DVR is still preferred because the SVC has no ability to control active power flow. Another reason is that the DVR less costs compared to the UPS and super conducting magnetic energy storage (SMES) device. Other reasons include that the DVR has a higher energy capacity compare to the SMES. The DVR is smaller in size and less costs compared to the DSTATCOM. [6]

A. Location of DVR

The power quality problems (sags, swells, harmonics etc.) can be overcome by using the concept of custom power devices which is introduced recently. One of those devices is the Dynamic Voltage Restorer (DVR), which is the most efficient and effective modern custom power device used in power distribution networks. The location of DVR is as shown in the Fig.1 DVR is a recently proposed series connected solid state device that injects voltage into the system in order to regulate the load side voltage. It is normally installed in a distribution system between the supply and the critical load feeder at the point of common coupling (PCC). Other than voltage sags and swells compensation, DVR can be also added to other features like: line voltage harmonics compensation, reduction of transients in voltage and fault current limitations [1, 4].
A Dynamic Voltage Restorer (DVR) is a series connected solid state device that injects voltage into the system in order to regulate the load side voltage.

2) Injection / Booster Transformer

It consists of two side voltage one is high voltage side and other is low voltage side. The high voltage side is normally connected in series with the distribution network while the power circuit of the DVR is connected to the low voltage side. The DVR transfer the voltage which is required for the compensation from DC side of the inverter to the distribution network through the injection transformer [3].

3) Harmonic Filter

The main task of harmonic filter is to keep the harmonic voltage content generated by the voltage source converters to the permissible level (i.e. eliminate high frequency switching harmonics). It has a small rating approximately 2% of the load MVA.

4) Voltage Source Inverter

A voltage source inverter is a power electronic device consisting of a switching device and a storage device such as battery. VSI can generate a sinusoidal voltage at any required magnitude, phase and frequency. VSI is used to temporarily generate the part of the supply voltage that is missing. IGBT is the newer compact switching device that is used with VSI for DVR operation [5].

5) Switching Devices

There are four main types of switching devices: Metal Oxide Semiconductor Field Effect Transistors (MOSFET), Gate Turn-Off thyristors (GTO), Insulated Gate Bipolar Transistors (IGBT), and Integrated Gate Commutated Thyristors (IGCT). Each type has its own benefits and drawbacks. The IGCT is a recent compact device with enhanced performance and reliability that allows building VSC with very large power ratings. Because of the highly sophisticated converter design with IGCTs, the DVR can compensate dips which are beyond the capability of the past DVRs using conventional devices.

6) Storage Devices

The capacity of the DC Energy Storage Unit determine the duration of the sag which can be compensated by the DVR [4]. The DC Energy Storage Unit has two main tasks [4].

1) The first task is to charge the energy source after a sag compensation event.

2) The second task is to maintain dc link voltage at the nominal dc link voltage.

7) Control Unit

The control unit detect any disturbance in the supply voltage and compares with the reference Value. Then this unit generates switching pulses for the semiconductor switches of VSI. The semiconductor switches are then operated according to these switching pulses in order to generate three phase voltages for the compensation [7].

C. Operating Principle of DVR

The basic function of the DVR is to inject a dynamically controlled voltage VDVR generated by a forced commutated converter in series to the bus voltage by means of a booster transformer. The momentary amplitudes of the three injected phase voltages are controlled such as to eliminate any detrimental effects of a bus fault to the load voltage VL. This means that any differential voltages caused by disturbances in the ac feeder will be compensated by an equivalent voltage generated by the converter and injected on the medium voltage level through the booster transformer. The DVR has two modes of operation which are: standby mode and boost mode. In standby mode (VDVR=0), the booster transformer’s low voltage winding is shorted through the converter. No switching of semiconductors occurs in this mode of operation, because the individual converter legs are triggered, such as to establish a short-circuit path for the transformer connection. Therefore, only the comparatively low conduction losses of the semiconductors in this current loop contribute to the losses. The DVR will be most of the time in this mode. In boost mode (VDVR>0), the DVR is injecting a compensation voltage through the booster transformer due to a detection of a supply voltage disturbance.
D. Simulation

In order to show the performance of the DVR in voltage sags and swells mitigation, a simple distribution network is simulated using MATLAB (fig.1). Voltage sags and swells are simulated by temporary connection of different impedances at the supply side bus. A DVR is connected to the system through a series transformer with a capability to insert a maximum voltage of 50% of the phase to ground system voltage. Apart from this, a series filter is also used to remove any high frequency components of power. In this simulation the In-Phase Compensation (IPC) method is used. The load considered in the study is a 5.5 MVA capacity with 0.92 p.f., lagging.

1) Voltage Sags

A case of Three-phase voltage sag is simulated and the results are shown in Figure 3. In this case, we assume that there is a 30% three-phase voltage sag with +30° phase jump in phase-a in supply voltage that is initiated at 0.1s and it is kept until 1.8 s. Fig.3 shows the result of voltage sag compensation.

![Fig. 3: Voltage Sag](image)

2) Voltage Swells

The performance of DVR for a voltage swell condition is investigated. Here, the supply voltage swell is generated as shown in Figure 4. In the second case, performance of DVR for a voltage swell condition is investigated. Here, an unbalance voltage swell with 30% three-phase voltage swell with +30° phase jump in phase-a starts at 0.1s and ends at 1.8s is considered.

![Fig. 4: Voltage Swell](image)

II. Conclusion

Power quality measures can be applied both at the user end and also at the utility level. This paper has presented models of custom power equipment, namely DVR, applied them to mitigate voltage dip which is very prominent as per utilities are concerned. Though conventional techniques are available, the proposed devices are very fast acting and efficient. DVR is considered to be an efficient solution due to its relatively low cost and small size, also it has a fast dynamic response. The simulation results show clearly the performance of a DVR in mitigating voltage sags and swells. The DVR handles both balanced and unbalanced situations without any difficulties and injects the appropriate voltage component to correct rapidly any anomaly in the supply voltage to keep the load voltage balanced and constant at the nominal value.

ACKNOWLEDGEMENTS

It is indeed a pleasure for me to express my sincere gratitude to those who have always helped me for this dissertation work. First of all I am humbly expressing thanks to my respected guides Asso. Prof. Vipul modi, Asso. Professor, Department of Electrical Engineering, LDCE Ahmedabad for their valuable time and constant help given to me for their motivation and help given to me, who has always stood kind concern and consideration regarding my academic requirements, in spite of having his busy schedule.

REFERENCE

[3] Dr Kondapalli S.Varaprasad, “Comparison and Analysis on the Role of D-STATCOM and DVR with PI Controller to improve the power Quality in Distributed Networks” International Research Journal of Computer Science (IRJCS), Volume 1, ISSN: 2393-9842 (October 2014),