
IJSRD - International Journal for Scientific Research & Development| Vol. 5, Issue 04, 2017 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 1755

Agile Vs Traditional Methodology: A Comparative View
Jyotsna1 Mukul Varshney2 Shivani Garg3 Abha Kiran Rajpoot4

1,2,3,4Department of Computer Science & Engineering
1,2,3,4Sharda University

Abstract— One of the first decisions we face for each of our

project implementations at Segue is “Which development

methodology should we use?” Most software companies

nowadays aim to produce valuable software in short time

period with minimal costs, and within unstable, changing

environments. Agile Methodologies were thus introduced to

meet the new requirements of the software development

companies. This paper gives the comparative view of agile

development and traditional development.

Key words: Agile Methodology, Traditional Methodology

I. INTRODUCTION

A software application or an information system is designed

to perform a particular set of tasks. Often, this set of tasks

that the system will perform provides well-defined results,

which involve complex computation and processing. It is

therefore a harsh and tedious job to govern the entire

development process to ensure that the end-product

comprises of high degree of integrity and robustness, as well

as user acceptance. Thus, a systematic development process

which is able to emphasize on the understanding of the

scope and complexity of the total development process is

essential to achieve the said ¬characteristics of a successful

system. There are two SDLC methodologies which are

utilized by most system developers, namely the traditional

development and agile development. These two approaches

will be explained along with their advantages and

disadvantages.

II. WATERFALL METHODOLOGY

The Waterfall Model was first Process Model to be

introduced. It is also referred to as a linear-sequential life

cycle model. It is very simple to understand and use. In a

waterfall model, each phase must be completed fully before

the next phase can begin. This type of software development

model is basically used for the project which is small and

there are no uncertain requirements. At the end of each

phase, a review takes place to determine if the project is on

the right path and whether or not to continue or discard the

project. In this model software testing starts only after the

development is complete. In waterfall model phases do not

overlap[4,5].

As this process is sequential, once a step has been

completed, developers can’t go back to a previous step – not

without scratching the whole project and starting from the

beginning. There’s no room for change or error, so a project

outcome and an extensive plan must be set in the beginning

and then followed carefully.

Fig. 1: Traditional Approach: Waterfall

A. Advantages of the Waterfall Methodology

1) The waterfall methodology stresses meticulous record

keeping. Having such records allows for the ability to

improve upon the existing program in the future[1,2].

2) With the waterfall methodology, the client knows what

to expect. They’ll have an idea of the size, cost, and

timeline for the project. They’ll have a definite idea of

what their program will do in the end.

3) In the case of employee turnover, waterfall’s strong

documentation allows for minimal project impact

B. Disadvantages of the Waterfall Methodology

1) Once a step has been completed, developers can’t go

back to a previous stage and make changes.

2) Waterfall methodology relies heavily on initial

requirements. However, if these requirements are faulty

in any manner, the project is doomed.

3) If a requirement error is found, or a change needs to be

made, the project has to start from the beginning with

all new code.

4) The whole product is only tested at the end. If bugs are

written early, but discovered late, their existence may

have affected how other code was written. Additionally,

the temptation to delay thorough testing is often very

high, as these delays allow short-term wins of staying

on-schedule.

5) The plan doesn’t take into account a client’s evolving

needs. If the client realizes that they need more than

they initially thought, and demand change, the project

will come in late and impact budget.

C. When to use waterfall methodology?

1) When there is a clear picture of what the final product

should be.

2) When clients won’t have the ability to change the scope

of the project once it has begun.

3) When definition, not speed, is key to success

III. AGILE METHODOLOGY

Agile came about as a solution to the disadvantages of the

waterfall methodology. Instead of a sequential design

http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-are-the-software-development-models/
http://istqbexamcertification.com/what-is-a-software-testing/

Agile Vs Traditional Methodology: A Comparative View

 (IJSRD/Vol. 5/Issue 04/2017/429)

 All rights reserved by www.ijsrd.com 1756

process, the Agile methodology follows an incremental

approach.

Agile methods are a subset of iterative and

evolutionary methods and are based on iterative

enhancement and opportunistic development processes. In

all iterative products, each iteration is a self-contained, mini-

project with activities that span requirements analysis,

design, implementation, and test[1]. Each iteration leads to

an iteration release that integrates all software across the

team and is a growing and evolving subset of the final

system. The purpose of having short iterations is so that

feedback from iterations N and earlier, and any other new

information, can lead to refinement and requirements

adaptation for iteration N + 1. The customer adaptively

specifies his or her requirements for the next release based

on observation of the evolving product, rather than

speculation at the start of the project. Agile is to have

frequent inspection and adaptation in line with customer

expectations and needs[2]. Agile methodologies include:

Extreme Programming, Agile Modeling, SCRUM, Crystal

methodologies, Feature-Driven Development, Adaptive

Software Development. Agile is a set of software

development methodologies, which are fundamentally based

on some common principles

Agile is based on a few principles detailed below:

1) KIS [Keep it simple] approach

2) Customer satisfaction

3) Working software is the measure of progress

4) Working software is delivered in frequent intervals

5) Late changes in requirements can be accommodated

6) Face to face communication within teams

7) Self organizing teams

8) Attention to technical excellence and good design

9) Adoption to change

Developers start off with a simplistic project design,

and then begin to work on small modules. The work on

these modules is done in weekly or monthly sprints, and at

the end of each sprint, project priorities are evaluated and

tests are run. These sprints allow for bugs to be discovered,

and customer feedback to be incorporated into the design

before the next sprint is run[3].

Fig. 2: Agile Development: Scrum

A. Advantages of the Agile Methodology

1) The Agile methodology allows for changes to be made

after the initial planning. Re-writes to the the program,

as the client decides to make changes, are expected.

2) Because the Agile methodology allows you to make

changes, it’s easier to add features that will keep you up

to date with the latest developments in your industry.

3) At the end of each sprint, project priorities are

evaluated. This allows clients to add their feedback so

that they ultimately get the product they desire.

4) The testing at the end of each sprint ensures that the

bugs are caught and taken care of in the development

cycle. They won’t be found at the end.

5) Because the products are tested so thoroughly with

Agile, the product could be launched at the end of any

cycle.

B. Disadvantages of Agile Methodology

1) With a less successful project manager, the project can

become a series of code sprints. If this happens, the

project is likely to come in late and over budget.

2) As the initial project doesn’t have a definitive plan, the

final product can be grossly different than what was

initially intended[4].

C. When should you use Agile methodology?

1) When rapid production is more important than the

quality of the product.

2) When clients will be able to change the scope of the

project.

3) When there isn’t a clear picture of what the final

product should look like.

4) When you have skilled developers who are adaptable

and able to think independently.

5) When the product is intended for an industry with

rapidly changing standards.

IV. CONCLUSION

Both the Agile and waterfall methodologies have their

strengths and weaknesses. The key to deciding which is

right for you comes down to the context of the project. Is it

going to be changing rapidly? If so, choose Agile. Do you

know exactly what you need? Good. Then maybe waterfall

is the better option.

REFERENCES

[1] Agile Alliance. Manifesto for Agile Software

Development. [Online] Retrieved 16th March 2009.

Available at: http://www.agilemanifesto.org .

[2] Agile Modeling Home Page. Effective Practices for

Modeling and Documentation. [Online] Retrieved 17th

March 2009. Available at: www.agilemodeling.com

[3] Nikiforova, O., Nikulsins, V., Sukovskis, U.:

Integration of MDA Framework into the Model of

Traditional Software Development. In: Frontiers in

Artificial Intelligence and Applications, Databases and

Information Systems V, vol. 187, pp. 229–239. IOS

Press, Amsterdam (2009)

[4] Thesis, Jonna Kalermo and Jenni rissanen, “Agile

software development in theory and practice”

[5] Chan, F., & Thong, J. (2009). Acceptance of agile

methodologies: A critical review and conceptual

framework. Decision Support Systems (46), 803-814.

[6] Sharp, H., Robinson, H., & Petre, M. (2009). The role

of physical artefacts in agile software development:

Two complementary perspectives. Interacting with

Computers , 108-106.

