Analysis of EEG Signal Using Wavelet Transform and SVM Classifier

Chirag1 Sanjeev Kumar Dhull2
1PG Student 2Assistant Professor
1,2Department of Electronics and Communication Engineering
1,2Guru Jambheswar University of Science & Technology, Hisar, Haryana 125001, India

Abstract— Electroencephalogram (EEG) signals are used to measure the brain activity. For analyzing the EEG signal various transform methods are used. This paper is devoted to the use of wavelet transform i.e. db1-db4 and SVM classifier is employed for calculating the accuracy. In this paper, we calculate the accuracy of the input signal using wavelet transform, also calculate the features of the signal i.e. energy and entropy.

Key words: EEG, PLN, EBA, EMA, RA

I. INTRODUCTION

The electroencephalography (EEG) is a tool to study the brain activity dynamics non-invasively. However during acquisition the EEG signal encounters various artifacts, which degrades the feature resolutions of the signal. The predominant artifacts are Power Line Noise (PLN), Eye Blink Artifact (EBA), ElectroMioGram (EMG), Cardiac Signal Artifact (CSA), Respiration Artifact (RA) and Electrode Motion Artifact (EMA). In this aspect to facilitate the neurologist for accurate diagnosis these artifacts have to be disregarded. Thus, extraction of high-resolution EEG signals from the background contaminations is an important issue to investigate. The goal of brain signal enhancement is to separate the valid signal components from the undesired artifacts and to present an EEG that facilitates easy and accurate interpretation.

II. METHODOLOGY

The EEG signals are collected from www.physionet.org which gives free access via the web to the large collections of recorded physiologic signals. Features of EEG signals are extracted using DiscreteWavelet Transform at 5th level of decomposition. For classification and to analyze the parameters of EEG signal such as entropy and energy, svmtrain SVM classifier is used. Comparative analysis of EEG signal by Daubechies wavelets from db1 to db4 are used for improving the accuracy.

III. RESULTS AND ANALYSIS

The features of EEG signal is extracted using wavelet transform at different levels and svmtrain classifier is used for classification.

Fig. 1: Original EEG signal.

Fig. 1 shows the input EEG signal. This signal is analyzed and features are extracted using wavelet transform.

A. Analysis using wavelet db1:

The analysis of the input EEG signal using wavelet db1 and svmtrain classifier.

Fig. 2: Decomposition of signal using db1.

The above fig shows the decomposition of original signal using db1.
Analysis of EEG Signal Using Wavelet Transform and SVM Classifier

(IJSRD/Vol. 4/Issue 08/2016/016)

All rights reserved by www.ijsrd.com

Fig. 3: Classified signal output using db1.
The fig shows the accuracy of classifier using wavelet db1.

Fig. 6: Classified signal output using db2.
The fig shows the accuracy of classifier using wavelet db2.

Fig. 4: Mean accuracy using db1.
The mean accuracy using wavelet db1 is 84.93.

B. Analysis of input signal using wavelet db2:
The analysis of the input EEG signal using wavelet db2 and svmtrain classifier.

Fig. 5: Decomposition of signal using db2.
The above fig shows the decomposition of original signal using db2.

Fig. 7: Mean accuracy using db2.
Mean Accuracy using wavelet db2 is 88.80.

C. Analysis of input signal using wavelet db3:
The analysis of the input EEG signal using wavelet db3 and svmtrain classifier.

Fig. 8: Decomposition of signal using db3.
The above fig shows the decomposition of original signal using db3.
Analysis of EEG Signal Using Wavelet Transform and SVM Classifier

D. Analysis of signal using db4:
The analysis of the input EEG signal using wavelet db4 and svmtrain classifier.

IV. COMPARATIVE RESULTS

Fig. 14: Comparison of mean accuracy from db1 to db4.

<table>
<thead>
<tr>
<th>Level</th>
<th>db4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>94.93</td>
</tr>
<tr>
<td>Entropy</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Table 1:

V. CONCLUSION

The features of EEG signal extracted using wavelet transform and svmtrain classifier is used to obtain higher accuracy. The result shows that wavelet db4 gives more accuracy then others i.e. db1, db2, db3. The accuracy using db4 is 92.13, entropy of signal is 2.8 and energy of the signal is 94.93. Our
method gives better result without any complexity and also retain the original information contained in the EEG signal.

REFERENCES

[10]”CASRP Publisher,” 2016.