Effect of process parameters on temperature distribution and weld pool geometry during TIG welding of 304 stainless steel

Mohd Anees Siddiqui¹ K.M.Moeed²
¹²University Polytechnic, Integral University Lucknow, INDIA

Abstract—A steady state model of TIG welding process was developed by using Smart Weld application in order to predict the temperature distribution and the effect of process parameters on weld pool during the TIG welding operation of 304 stainless steel. The planning of simulation runs has been performed in accordance with the Taguchi L9 design with two factors, each three levels. The process parameters considered are weld speed and input power during TIG welding. Multiple linear regression analysis is performed in order to analyze the effect of process parameters on length, width and depth of weld pool during TIG welding. Mathematical relationships were also established between input and analysis parameters. This study indicates that the input power is the most significant parameter.

Key words: TIG, Welding, Temperature, Weld pool

I. INTRODUCTION

TIG welding process is a non-consumable arc welding process in which tungsten electrode to produce the weld. The weld zone is shielded from atmosphere with a layer of inert gas [1]. Development of TIG welding process has opened the scope for joining of many materials like stainless steel [2]. Lots of work is done in the area of TIG welding for the optimization of parameters. In this process, the welding parameters are weld speed, current, voltage, input power, gas flow, etc. Figure 1 shows the formation of weld pool during tungsten inert gas welding, tungsten electrode is considered as cathode and workpiece is considered as anode [19].

Fig. 1: Formation of weld pool.[19]

Lots of simulator based research [25-34] is done for solid state welding process such as friction stir welding. But very less work is reported in the area of simulation in fusion welding process. Although several researchers [3-11] have performed experimental research of tungsten inert gas welding for optimization of process parameters which includes current, weld speed, weld structure, shielding gas, etc for the investigation on the analysis parameters such as mechanical properties, morphology, microstructure, weld bead geometry, etc. These investigations were based on regression analysis and analysis of variance used for prediction of effect of process parameters over the analysis parameters. Scholars [12-17] have also worked on the simulation and finite element analysis for prediction of temperature distribution and residual stresses developed during tungsten inert gas welding (TIG) welding process. Simulation of welding process in one of the emerging area which is beneficial for the researchers and scholars. This method can be adopted for predictions related to the weld pool and temperature distribution which is responsible for heat affected zone and weld bead geometry. Researchers [18-22] have also performed simulations and analysis for prediction of several aspects related to weld pool during TIG welding. They discussed the mechanism and dynamics of weld pool. The weld pool formation is an important aspect which can be considered for simulation based predictions. Further, experiments can be performed on the basis of data generated through simulation. The weld pool geometry or shape includes the length, width, and depth.

II. PRESENT WORK

In the present work, an attempt is made to investigate the temperature distribution and the effects of weld speed (WS) and power input (P) on the weld pool geometry during TIG welding of 304 stainless steel. The shape of weld pool is responsible for the intensity of heat affected zone. The steady state conduction model of fusion or moving heat source is developed by using Smartweld application [23]. The Simulation runs are performed in accordance with taguchi L9 technique. The Regression model has been developed in order to investigate the influence of process parameters.

Plates of 304 stainless steel with thickness 10 mm is considered for TIG welding. The welding boundary conditions and range of process parameters are adopted from the previous research work [17].

Fig. 2: Conduction Heat flow model.

The steady state model is based on the Rosenthal moving point source (shown in figure 2) to the conduction heat flow equation which is as follows [23]:

\[\frac{2\pi (T - T_0) k_f t}{q} = e^{\frac{v_f}{2\alpha_f}} K_s \left(\frac{v_f}{2\alpha_f} \right) \]

where,
Effect of process parameters on temperature distribution and weld pool geometry during TIG welding of 304 stainless steel

\[T = \text{contour temperature of interest (°C) } \]
\[T_0 = \text{base metal temperature} \]
\[k = \text{thermal conductivity of metal (J/ms°C)} \]
\[t = \text{thickness of metal plate (mm)} \]
\[q = \text{energy (heat) input to the metal (J)} \]
\[v = \text{welding speed (mm/s)} \]
\[\alpha = \text{thermal diffusivity of metal (m}^2\text{s)} \]

III. DESIGN OF SIMULATION RUNS

The range of process parameters is shown in table 1. Three levels of weld speed (WS) and power input (P) were selected which are suitable for tungsten inert gas welding. All other parameters were kept constant. The weld pool geometry (length, width and depth) were observed for all 9 simulation runs (table 2) as per the taguchi design of experiment.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Parameter</th>
<th>Level I</th>
<th>Level II</th>
<th>Level III</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weld speed (WS) mm/s</td>
<td>1.5</td>
<td>2.35</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>Power Input (P) Watts</td>
<td>1200</td>
<td>2887.5</td>
<td>3375</td>
</tr>
</tbody>
</table>

Table 1: Parameters and their level

<table>
<thead>
<tr>
<th>#Runs</th>
<th>Weld Speed (mm/s)</th>
<th>Input Power (Watts)</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.50</td>
<td>1200</td>
<td>6.03</td>
<td>5.56</td>
<td>2.78</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>2887.5</td>
<td>12.90</td>
<td>10.50</td>
<td>5.26</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>3375</td>
<td>14.70</td>
<td>11.70</td>
<td>5.85</td>
</tr>
<tr>
<td>4</td>
<td>2.35</td>
<td>1200</td>
<td>5.67</td>
<td>4.96</td>
<td>2.48</td>
</tr>
<tr>
<td>5</td>
<td>2.35</td>
<td>2887.5</td>
<td>12.10</td>
<td>9.05</td>
<td>4.52</td>
</tr>
<tr>
<td>6</td>
<td>2.35</td>
<td>3375</td>
<td>13.90</td>
<td>10.00</td>
<td>5.00</td>
</tr>
<tr>
<td>7</td>
<td>3.20</td>
<td>1200</td>
<td>5.44</td>
<td>4.54</td>
<td>2.27</td>
</tr>
<tr>
<td>8</td>
<td>3.20</td>
<td>2887.5</td>
<td>11.70</td>
<td>8.08</td>
<td>4.04</td>
</tr>
<tr>
<td>9</td>
<td>3.20</td>
<td>3375</td>
<td>13.40</td>
<td>8.89</td>
<td>4.45</td>
</tr>
</tbody>
</table>

Table 2: The Taguchi L9 design with two factors-each three levels along with their responses.

IV. RESULTS AND DISCUSSION

In the present work, ISO-3D module of Smartweld application is used for simulation of TIG welding process on 304 stainless steel. This section presents the temperature distribution and weld pool geometry developed during TIG welding.

A. Temperature Distribution:

The temperature distribution obtained by simulation is symmetrical throughout the 304 stainless steel plates. Figure 2 shows the simulated temperature distribution across the plates during the welding process with the weld pool shown in red color and numbered as 1 which represents the molten metal and 2-5 are the temperature contours adjacent to the weld zone. Weld pool geometry for different temperature contours along with its values are shown in table 3. Graph (figure 3) shows the variation of length, width and depth of weld pool for corresponding temperature at contours 1 to 5 and it is observed that as weld pool (contour1) has minimum dimensions but as we move from contours 2-5, the dimensions increases. Figure 4-12 shows the temperature distribution profile obtained through simulation.

Table 3: Temperature contours and their dimensions

<table>
<thead>
<tr>
<th>Contour Number</th>
<th>Temperature (°C)</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>1454</td>
<td>6.03</td>
<td>5.56</td>
<td>2.78</td>
</tr>
<tr>
<td>2</td>
<td>1180</td>
<td>7.25</td>
<td>6.35</td>
<td>3.27</td>
</tr>
<tr>
<td>3</td>
<td>910</td>
<td>9.12</td>
<td>7.94</td>
<td>3.97</td>
</tr>
<tr>
<td>4</td>
<td>640</td>
<td>12.5</td>
<td>10.3</td>
<td>5.13</td>
</tr>
<tr>
<td>5</td>
<td>380</td>
<td>20.1</td>
<td>14.7</td>
<td>7.037</td>
</tr>
</tbody>
</table>

Fig. 2: Temperature distribution during TIG welding of 304 stainless steel.

Fig. 3: Variation of weld pool geometry with respect to contour temperatures for Simulation run-1

Fig. 4: Temperature distribution for Simulation run-1

Fig. 5: Temperature distribution for Simulation run-2
Effect of process parameters on temperature distribution and weld pool geometry during TIG welding of 304 stainless steel

B. Weld Pool Geometry:
Weld pool geometry during TIG welding process of 304 stainless steel plates was obtained through simulation by using SmartWeld codes. Weld pool length, width and depth is shown in figure 13.

C. Length:
Graph (figure 14) shows the main effect of process parameters i.e. welding speed (WS) and power input (P) on weld pool length (l). Graph (figure 15) shows the interaction effect of process parameters i.e. welding speed (WS) and power input (P) on weld pool length (l).
Effect of process parameters on temperature distribution and weld pool geometry during TIG welding of 304 stainless steel

The relationship among weld speed (WS), power input (P) and weld pool length (l) during tungsten inert gas welding of 304 stainless steel is obtained through regression analysis by fitting a linear model to analyze the significant process parameter for weld pool length, the regression equations formed are as follows:

\[l = 2.561 + 0.003824 P - 0.6059 WS \] (2)

Figure 16 shows the variation in simulated length with respect to predicted values through regression.

D. Width:

Graph (figure 17) shows the main effect of process parameters i.e. welding speed (WS) and power input (P) on weld pool width (w). Graph (figure 18) shows the interaction effect of process parameters i.e. welding speed (WS) and power input (P) on weld pool width (w).

The relationship among weld speed (WS), power input (P) and weld pool width (w) during tungsten inert gas welding of 304 stainless steel is obtained through regression analysis by fitting a linear model to analyze the significant process parameter for weld pool geometry, the regression equations formed are as follows:

\[w = 5.035 + 0.002407 P - 1.225 WS \] (3)

Figure 19 shows the variation in simulated width with respect to predicted values through regression.

E. Depth:

Graph (figure 20) shows the main effect of process parameters i.e. welding speed (WS) and power input (P) on weld pool width (w). Graph (figure 21) shows the interaction effect of process parameters i.e. welding speed (WS) and power input (P) on weld pool width (w).
The variation of weld speed and power input is almost similar for length, width and depth of weld pool. For weld speed from level 1 to level 2, there is decrease in weld pool geometry but as we move from level 2 to level 3 then the rate decrease is reduced slightly. For power input, there is increase in weld pool geometry from level 1 to 2 but the rate of increase is reduced from level 2 to 3.

Figure 15, 18 and 21 shows the interaction plots for weld speed and power input on the weld pool geometry length, width, depth respectively. It is observed that the weld pool geometry is minimum for weld speed of 3.2 mm/s and power input of 1200 watts. It is maximum for weld speed of 1.5 mm/s and power input of 3375 watts.

Table 5 shows the summary of results obtained from regression analysis of the data obtained weld geometry length, width, depth through simulation of TIG welding of 304 stainless steel. The table shows the effects of parameters.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Length (mm)</th>
<th>Width (mm)</th>
<th>Depth (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding Speed (WS) (mm/s)</td>
<td>Decrease</td>
<td>Decrease</td>
<td>Decrease</td>
</tr>
<tr>
<td>Power Input (P) Watts</td>
<td>Increase</td>
<td>Increase</td>
<td>Increase</td>
</tr>
</tbody>
</table>

Table 5: Result summary: Effect of parameters.

V. CONCLUSIONS

In case of TIG welding process, suitable weld pool geometry is responsible for successful joining of two 304 stainless steel plates. In order to analyze the effect of process parameters such as weld speed and power input on the weld pool geometry, the simulation of TIG welding was performed through Smartweld application in accordance with Taguchi L9 orthogonal design. The Regression analysis was performed in order to establish mathematical relation among the parameters can be used for prediction of weld pool geometry during TIG welding of 304 stainless steel for the selected range of process parameters. From the analysis of variance, it is observed that power input has 98.45%, 85.70% and 85.67% contribution on length, width and depth respectively. It can be concluded that the most significant parameter is power input which has high percentage of contribution on responses.

REFERENCES

