A Novel Multi-Function Inverse Active Filter using CFOAs
Vishal Patil1 Suhas R. Desai2
1,2Department of Electronic & Tele-Communication Engineering
1,2Sant Gajanan Maharaj College of Engineering, Mahagaon (MH).

Abstract—Inverse filters are widely used in various control, instrumentation and communication systems to correct the distortions of signals caused by signal processing or transmission systems. In this paper a novel approach multi-function inverse biquad configuration based on current feedback operational amplifiers (CFOAs) and grounded passive elements. The proposed configuration is used to realize inverse lowpass, inverse bandpass and inverse highpass filter functions. The relevant coefficients of the inverse filters are orthogonal adjustable by independent passive elements. All the passive elements in the proposed configuration are grounded to benefit easier electronic tunability.

Key words: Inverse active filters, Current feedback operational amplifier, Analog signal processing, Current-mode filters, voltage-mode filters, multifunction inverse active filter

I. INTRODUCTION

In communication as well as in control and instrumentation systems, there are numerous situations in which an electrical signal is changed through a linear or nonlinear transformation by a processing or a transmission system. Presently some methods have dealt with this task of inverse filtering [1-8]. There are other configurations have dealt with general techniques of generating inverse transfer functions [1, 2]. In A. Leuciuc el [3], a general approach is presented for obtaining the inverse transfer function for linear dynamic systems and the inverse transfer characteristic for non-linear resistive circuits. In B. Chipipop el [5], a procedure for deriving current-mode, four-terminal floating nullor (FTFN)-based inverse filter from the voltage-mode filter is given. It uses the method in [3] and dual transformation [9] during the procedure. Due to the use of dual transformation, this approach can only be applied to planar circuit. By the use of ad joint transformation, another easier procedure for deriving current-mode FTFN-based inverse filter from the voltage-mode filter is presented and it is applicable to nonplanar circuits [6]. All the proposed approaches in [3, 5, and 6] are useful for obtaining single-input single-output inverse filters. The new inverse active filter configurations presented in [8] utilized three CFOAs, two grounded capacitors and three or more resistors. In this paper, we present a novel multifunction inverse active filter scheme based on CFOAs and grounded passive elements. By slight modification of the passive elements of the proposed scheme, various in-verse filter functions can be realized. The workability of the proposed scheme is verified by P-SPICE simulations.

II. THE PROPOSED CONFIGURATION

The current-feedback operational amplifier, such as AD844 from Analog Devices Inc. [10], has been used as a building block in circuit design. The advantages of CFOAs are their constant bandwidths, independent closed-loop gains and high slew-rate capabilities. The CFOA can be described using the following matrix-relations:

\[
\begin{bmatrix}
V_1 \\
I_1 \\
I_2 \\
V_3
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
I_x \\
V_y \\
V_z \\
I_w
\end{bmatrix}
\]

(1)

Fig.1: The proposed inverse filter configuration

A routine analysis of the configurations of Fig.1 yields the transfer functions given below:

\[
\frac{V_{01}}{V_{in}} = \frac{V_{03}}{V_{in}} = y_1 y_3 + y_2 y_4
\]

(2)

\[
\frac{V_{02}}{V_{in}} = \frac{V_{01}}{V_{in}} y_1 y_4
\]

(3)

If the admittances are \(y_0 = G_0, \ y_1 = sC_1, \ y_2 = sC_2 + G_2, \ y_3 = sC_3\) and \(y_4 = G_4\), the functions of inverse lowpass filter and inverse integrator can be realized at \(V_{01}\)and \(V_{02}\) respectively. These are given by,

\[
\frac{V_{01}}{V_{in}} = \frac{V_{03}}{V_{in}} = \frac{s^2C_1C_3 + sC_2G_4 + G_2G_4}{G_0G_4}
\]

(4)

\[
\frac{V_{02}}{V_{in}} = sC_1
\]

(5)

From equation (4), the values of \(C_1, C_2, G_0\) and \(G_2\) are tunable, so that system parameters of inverse filter, such as corner frequency and quality factor are independently adjusted by the passive elements.

In equation (2), if the admittances are \(y_0 = sC_0, \ y_1 = sC_1, \ y_2 = sC_2 + G_2, \ y_3 = sC_3\) and \(y_4 = G_4\), the functions of inverse bandpass filter and inverse integrator can be realized at \(V_{01}\)and \(V_{02}\), respectively. They are given by,

\[
\frac{V_{01}}{V_{in}} = \frac{V_{03}}{V_{in}} = \frac{s^2C_1C_4 + sC_2G_4 + G_2G_4}{sC_0G_4}
\]

(6)

\[
\frac{V_{02}}{V_{in}} = \frac{sC_1}{G_4}
\]

(7)

Similarly, if the admittances are \(y_0 = sC_0, \ y_1 = G_1, y_2 = sC_2 + G_2, y_3 = G_3\) and \(y_4 = sC_4\), the functions of
inverse highpass filter and inverse differentiator can be realized at V_{o1} and V_{o2}, respectively. They are given by,
\[
\frac{V_{o1}}{V_{in}} = \frac{V_{o3}}{V_{in}} = \frac{s^2C_2C_4 + sC_4G_2 + G_1G_3}{sC_4} \quad (8)
\]
and
\[
\frac{V_{o2}}{V_{in}} = \frac{G_1}{sC_4} \quad (9)
\]

The output V_{o3} is same as V_{o1}, this provides more flexibility in filter applications.

From the equations (2) and (3), we can derive all the filter functions as shown in Table 1 using six passive elements. The presented scheme in Fig.1 provides more flexible functions and different realization with identical configuration.

<table>
<thead>
<tr>
<th>Case</th>
<th>Function at V_{01}</th>
<th>Function at V_{02}</th>
<th>y_0</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inverse lowpass</td>
<td>Differentiator</td>
<td>G_0</td>
<td>sC_1</td>
<td>$sC_2 + G_2$</td>
<td>sC_3</td>
<td>G_4</td>
</tr>
<tr>
<td>2</td>
<td>Inverse lowpass</td>
<td>Inverse lowpass</td>
<td>G_0</td>
<td>$sC_1 + G_1$</td>
<td>G_2</td>
<td>sC_3</td>
<td>G_4</td>
</tr>
<tr>
<td>3</td>
<td>Inverse lowpass</td>
<td>Differentiator</td>
<td>G_0</td>
<td>sC_1</td>
<td>G_2</td>
<td>$sC_3 + G_3$</td>
<td>G_4</td>
</tr>
<tr>
<td>4</td>
<td>Inverse bandpass</td>
<td>Differentiator</td>
<td>sC_0</td>
<td>sC_1</td>
<td>$sC_2 + G_2$</td>
<td>sC_3</td>
<td>G_4</td>
</tr>
<tr>
<td>5</td>
<td>Inverse bandpass</td>
<td>Inverse lowpass</td>
<td>sC_0</td>
<td>$sC_1 + G_1$</td>
<td>G_2</td>
<td>sC_3</td>
<td>G_4</td>
</tr>
<tr>
<td>6</td>
<td>Inverse bandpass</td>
<td>Differentiator</td>
<td>sC_0</td>
<td>sC_1</td>
<td>G_2</td>
<td>$sC_3 + G_3$</td>
<td>G_4</td>
</tr>
<tr>
<td>7</td>
<td>Inverse bandpass</td>
<td>Integration</td>
<td>G_0</td>
<td>G_1</td>
<td>$sC_2 + G_2$</td>
<td>$sC_3 + G_3$</td>
<td>sG_4</td>
</tr>
<tr>
<td>8</td>
<td>Inverse bandpass</td>
<td>Integration</td>
<td>G_0</td>
<td>G_1</td>
<td>sC_2</td>
<td>$sC_3 + G_3$</td>
<td>sG_4</td>
</tr>
<tr>
<td>9</td>
<td>Inverse bandpass</td>
<td>Inverse highpass</td>
<td>G_0</td>
<td>$sC_1 + G_1$</td>
<td>sC_2</td>
<td>G_3</td>
<td>sG_4</td>
</tr>
<tr>
<td>10</td>
<td>Inverse highpass</td>
<td>Integration</td>
<td>sC_0</td>
<td>G_1</td>
<td>sC_2</td>
<td>$sC_3 + G_3$</td>
<td>sG_4</td>
</tr>
<tr>
<td>11</td>
<td>Inverse highpass</td>
<td>Inverse highpass</td>
<td>sC_0</td>
<td>$sC_1 + G_1$</td>
<td>sC_2</td>
<td>G_3</td>
<td>sG_4</td>
</tr>
<tr>
<td>12</td>
<td>Inverse highpass</td>
<td>Integration</td>
<td>sC_0</td>
<td>G_1</td>
<td>$sC_2 + G_2$</td>
<td>G_3</td>
<td>sG_4</td>
</tr>
</tbody>
</table>

Table 1: All The Inverse Filter Functions Using Six Passive Elements

III. SIMULATION RESULTS

To verify the workability of the proposed new configuration, the circuit has been tested on PSpice using AD844 type CFOA’s library file. The theoretical and simulated plots of frequency responses are shown in Fig.2 which is found to be in good agreement. These results, thus, confirm the workability of the proposed new configuration. In simulation, the values of all resistors and all capacitors are 10kΩ and 1nF respectively. The typical frequency responses of inverse lowpass (the case 1 of Table 1), inverse bandpass (the case 4 of Table 1) and inverse highpass (the case 12 of Table 1) are shown in Fig.2

![Fig. 2: Typical frequency responses of proposed new configuration: (a) inverse lowpass filter, (b) inverse bandpass filter, and (c) inverse highpass filter](image)

IV. CONCLUSION

We have proposed a novel configuration for the realization of multifunction inverse filter. It consists of CFOAs and
A Novel Multi-Function Inverse Active Filter using CFOAs
(ICESR/Vol. 4/Issue 05/2016/142)

grounded passive elements. The various inverse filter functions are realized by slight modifications of passive elements. It offers more flexibility in filter applications. The workability of these configurations has been confirmed by simulation results.

ACKNOWLEDGEMENT
This work has been performed at Programming Lab of E&TC Department in Sant Gajanan Maharaj College of Engineering, Mahagaon.

REFERENCES