Monitoring and Analysis of Epilepsy Patient using Android Platform
Pallavi Lokhande1 Tushar Mote2

1,2Savitribai Phule Pune University, JSPM’s JSCOE, Handewadi Road, Hadapsar, Pune-28, India

Abstract—Epilepsy patients are susceptible to fits. These fits can be as frequent as 10-15 times a day and the main problem is that the patient has no memory that he has had a Fit Attack. There is a great need to monitor the epilepsy patients and to inform the concerned doctor for analysis which is not possible in now a day’s hectic Work schedule where in both the parents are either working or 24 Hours Nurse is very expensive. The objectives of this paper were to continuously keep a track of all the patient’s activity using a mobile phone. Also we are differentiating between the types of Epilepsy. The user has to choose the epilepsy type and then the software will monitor various activities such as fall detection, Haphazard body movement, Urination, Loud noises and also develop an android app. Depending upon the type of activity the Android App will keep a track of Fits. We are sending an SMS to doctor and parents as soon as the fits start as well as an SMS when the FIT ends. The main idea of this is to monitor and analyze the Epilepsy attack and also track the progress of patient with in a given period of time.

Key words: Android App, Epilepsy, seizure, Smart-phone, sensor

I. INTRODUCTION
Epilepsy is a common neurologic disorder, Epilepsy affects 50 million people worldwide and one in ten people will suffer at least one seizure in their lifetime. For instance according to the Intercontinental Medical Statistics (IMS), epilepsy is the second most common neurological disease, affecting 70 000 people each year (from 10 million people).

The first step in improving epilepsy treatment is to do a precise diagnosis, since epilepsy is not only one disease with one cause and one treatment, but instead a variety of diseases with different treatments that express themselves as epileptic crises. The evaluation from epileptologist physicians is sometimes the only intervention used to elucidate the case. Moreover, electroencephalogram exams (EEG) help in diagnosing epilepsy but they have some practical limitations, especially due to the large amount of data that should be manually analyzed.

A seizure is an involuntary alteration in behavior, movement, sensation, or consciousness resulting from abnormal neuronal activity in the brain. Patients suffering from epilepsy usually experience behavioral symptoms, such as involuntary movement and rage reaction. Some of epileptic patients even require the medical aid in an emergency. Conventional monitoring with electroencephalogram (EEG) and video can be very unpleasant for patients. It is also time-consuming for physicians and healthcare professionals to close watch the states of patients. There have been many researches focus on detecting the state of vigilance in human beings and animal models automatically. It was found that the accelerometer (ACC) is a reliable objective instrument to access the physical activity of the subjects. Accelerometers usually have a tiny size and low weight and can provide fine information about daily behavior of the subject.

II. RELATED WORK
At first, due to the paroxystic nature of epilepsy, most part of ambulatory registers lasting in average 30 minutes are not long enough to identify the characteristic variations in EEG exams. In order to do longer recordings, patients must go to the hospital and stay as long as necessary to capture those variations. That practice is very expensive due to the low number of rooms in the hospital and the need for a team of professionals such as neurologists, nurses and neurophysiologists with time and experience to manually analyze hours of recordings of many patients.

It is also not uncommon to have a patient’s relative next to the hospital bed pressing a button to identify and register the approximate timestamp of a clinical epileptic event. The doctors can then focus on the most relevant parts of the whole EEG recording, though at the expense of human intervention. Portable ambulatory EEG exams already exist, but they also require a neurophysiologist expert to analyze hours of data [2].

There are differences between epilepsy in adults and Children. Although seizure types can be the same, causes are not. Seizures are more frequent in children having hundred Seizures per day and children respond differently, having different side Children with epilepsy have a bigger impact, since they are learning and understanding the word. Consequently, in this work we propose a process to support pediatric physicians’ decisions in a real context, which, whilst making conclusions harder, also makes them more relevant in a concrete sense. [4]

Besides, most ambulatory EEG equipments are not capable of sending signals to either hospital or doctors when a crisis is occurring, especially in the cases of pre-SUDEP situations. SUDEP is short for sudden unexpected death in epilepsy, a special condition where the patient eventually dies because of the disease. Due to the increasing number of patients and the costs of transport to and from the hospital as well as the costs of hospitalization, the remote care and monitoring of patients is a long and globally expected trend. [2]

Here we presents EpiCare, a smartphone-Android based for long-term remote epileptic patient monitoring, comprising a pre-SUDEP detection alert. Through an automated analysis of epileptic recordings, we can provide doctors a more comprehensive and semi-automated decision platform, while providing the patient a more comfortable monitoring experience at home. [1]

An automatic seizure detection method by simply using the ACC signals was popularly proposed, either in animal Experiments or in clinical use. They all yielded good results but only detecting the occurrence of a seizure event. The main objective of this study was to develop the seizure detection method that has the advantages of low computational energy, low false alarm and high detection accuracy for a seizure recognizing system.

[1]

[2]

[3]

[4]
III. PROPOSED BLOCK DIAGRAM

The block diagram of the proposed system as shown in Fig. 1 consists of different types of sensing unit such as moisture Sensor to measure urination, Temperature Sensor detects the body temperature, Accelerometer to detect fall detection, MIC Sensor to measure the presence of Loud noise.

![Block Diagram](image)

IV. PROPOSED SYSTEM

A. Sensors

Sensors are the device which converts the physical parameter into the electric signal. The system consists of temperature, MIC, moisture, Accelerometer. The output of sensor is analog signal; the signal is converted into digital signal and then fed to the processor. The temperature sensor is used to measure the temperature of the body. Here LM35 temperature sensor is used. The output voltage of sensor is linearly proportional to the Celsius (Centigrade) temperature. The moisture sensor is used to measure the moisture (urine). Here we are connecting a moisture based Electrode sensor. As soon as the water dries up then the electrode voltage rises 0 to 5v turn the AC motor. An accelerometer is an electromechanical device that will measure acceleration forces. The three axis accelerometers are basically used to identify the movements across the three axes. Accelerometer is an electronic device which is interfaced using I2C protocol and provides the reading after every 1msec. According to the requirement of the application, the microcontroller will take the reading from the accelerometer within a fixed interval of time and do the necessary operation according to the requirement of the application.

B. ARM9

The LPC2929 combine an ARM968E-S CPU core with two integrated TCM blocks, operating at frequencies of up to 125 MHz, Full-speed USB 2.0 OTG and device controller, CAN and LIN, 56 kB SRAM, up to 768 kB flash memory, external memory interface, three 10-bit ADCs, and multiple serial and parallel interfaces in a single chip targeted at consumer, industrial, medical, and communication markets. To optimize system power consumption, the LPC2927/2929 has a very flexible Clock Generation Unit (CGU) that provides dynamic clock gating and scaling.

V. OVERVIEW OF SYSTEM

The system comprises the following components:

a) a patient monitoring kit
b) a smart-phone, here we are developing an Android APP for doctors / Parents for monitoring and analysis of epilepsy patients.

c) Emergency Center
d) Patient monitoring kit

A. Patient Monitoring Kit

The system comprises the following components:

a) a patient monitoring kit
b) a smart-phone, here we are developing an Android APP for doctors / Parents for monitoring and analysis of epilepsy patients.

c) Emergency Center
d) Patient monitoring kit

B. Smartphone Application

The smartphone application is currently executed on an Android based device. The application access the data provided by the monitoring kit through the Bluetooth modem. Application running on the smartphone looks for signals coming from sensor that might lead to an emergency event. In such cases, the smartphone sends a message via SMS to a preconfigured telephone number at an Emergency Center, so that help can be provided on time. If connection to the PC is not possible, the smartphone stores data until the connection is restored. According to collected data seizure gets classified. Neurologists will have access on this data, so
that Neurologists can focus on the most important time periods of all recordings, thereby decreasing the time to diagnose the disease. In this review process, physicians can accept or reject each automatic marking, allowing them to base their diagnosis.

C. Emergency Center

The emergency center is responsible for dealing with critical situations. It receives notifications from the smartphone, which happens when an emergency event is identified. Fast response is mandatory since in this situation the patient can actually die if care is not provided shortly.

VI. FLOCHART AND RESULTS

The flow system is explain in following diagram:

![Flowchart of system](image)

Sensors collect data and stored in database. According to collected data seizure gets classified. Neurologists will have access on this data, so that Neurologists can focus on the most important time periods of all recordings, thereby decreasing the time to diagnose the disease. The data is stored like following diagram.

![Report for Doctor](image)

Enhanced reliability of seizure diaries (number, order, duration, sub-clinical seizures, and behavioral factors), Risk factor assessment. The Early detection of seizures can be possible. Possibility to provide therapy during the times of greatest seizure susceptibility, prevent accidents and limit injury. Cost of equipment is Low. It can detect and inform epilepsy accurately. This is User friendly GUI (Android GUI). It works 24 Hours. Signal more directly related to seizure symptoms Measurement more widely applicable, less obtrusive!

Automated detection algorithms are less complex, smaller and less expensive and power-consuming devices. Many devices for physiological signs and movement detection in other medical conditions on the market: transfer of knowledge.

VII. CONCLUSION

Epilepsy disorders are difficult to diagnose and treat. Sometimes long term EEG exams at the hospital are the only resource applied to diagnose the disease. The average local cost for inpatient monitoring is currently very high day per patient.

Our approach intends to reach more patients, reduce costs, and provide neurologists with a more comprehensive set of data to help in the diagnostics. At present, some initial results were obtained in both main research areas. The software profiler already works on gathering real time information from a running application on Android.

The system that will be implemented would be feasible and cost effective for Epileptic Patient. The system would continuously keep a track of all the patient activity using a mobile phone. This System Show the changes in Temperature of Body. Using this system, we are Detecting Fall of Head. We can monitor and analyze the Epilepsy attack and also track the progress of patient with in a given period of time.

REFERENCES


[5] Min Zhu, Student Member, IEEE, Wenbo Zhang, Deanna Dickens and Lei Ding, Member, IEEE
“Wavelet-Based Sparse Source Imaging In Localizing Epileptic Sources For Partial Epilepsy” 6th Annual International IEEE EMBS Conference on Neural Engineering San Diego, California, 6 - 8 November, 2013.