Clustering Dynamic and Distributed Dataset using Decentralized Algorithm

Mary Femy P.F 1 Linda Sara Mathew 2

1,2 Department of Computer Science & Engineering
1,2Mar Athanasius College of Engineering, Kothamangalam, Kerala, India

Abstract— In many popular applications large amounts of data are distributed among multiple sources. Analysis of this data and identifying clusters is challenging due to storage, processing, and transmission costs. A decentralized clustering algorithm called DCluster, which is capable of clustering distributed and dynamic data sets. Nodes continuously cooperate through decentralized gossip-based communication to maintain summarized views of the data set. The summarized view is a basis for executing the clustering algorithms to produce approximations of the final clustering results. DCluster can cluster a data set which is dispersed among a large number of nodes in a distributed environment. In DCluster the complete data set is clustered in a fully decentralized fashion, such that each node obtains an accurate clustering model, without collecting the whole data set.

Key words: DCluster, Distributed dataset, Dynamic

I. INTRODUCTION

Identify clusters, is an important factor in the analysis of large datasets. Generally, for extracting data, eliminating duplicate data, and making usable these data, several techniques have been proposed as data mining methods. As a result, data mining has emerged as an important area of research. Distributed computing environments have separated and diffuse data sources. Due to the large volume of computing and communications and network bandwidth limitations, privacy reasons, or because of the huge amount of distributed data, it’s essential that the processing of data be performed using a distributed approach, without aggregate data to a centralized location. Unsupervised clustering is a popular learning task with many application fields such as data compression, computer vision, and data mining. Available contents in those fields are growing exponentially and with no doubt faster than the computing performances of individual machines. Besides, data tends to originate more and more often from decentralized sources.

Most classic clustering algorithms are designed for the centralized setting, but in recent years data has become distributed over different locations, such as distributed databases, videos and images over networks and sensor networks. In many of these applications the data is inherently distributed because, as in sensor networks, it is collected at different sites. As a consequence it has become crucial to develop clustering algorithms which are effective in the distributed setting.

Distributed data clustering, aims to extract potentially useful information from large datasets by grouping similar data, and separating dissimilar data according to some criteria of dissimilarity between data items. In a distributed environment, it needs to be done when the data cannot be concentrated on a single site, for example, for reasons of security concerns or due to bandwidth limitations or due to high volumes of distributed data.

Clustering is a well-known and widely used exploratory data analysis technique. Most of the clustering algorithms that are available in the literature deal with data available at a single location. However, there exist many applications where data sources are distributed over a network and collecting the data at a central location before clustering is not a viable option. Decentralized Clustering algorithm (DCluster) can cluster a data set which is dispersed among a large number of nodes in a distributed environment. It can handle partition-based clustering, while being fully decentralized, asynchronous, and also adaptable to churn.

II. PROPOSED MODEL

The proposed Decentralized Clustering (DCluster) model is shown in Figure 1. It consider a set P = (p1; p2; . . . ; pn) of n networked nodes. Each node p stores and shares a set of data items Dintp , denoted as its internal data, which may change over time. D = ∪p Dintp is the set of all data items available in the network. Each data item d is presented using an attribute (metadata) vector denoted as dattr. While discovering clusters, p may also store attribute vectors of data items from other nodes. These items are referred to as the external data of p, and denoted as Dextp . The union of internal and external data items of p is referred to as Dp. During algorithm execution, each node p gradually builds a summarized view of D, by maintaining representativeness, denoted as Rp = (r p1; r p2; . . . ; r pkp). Each representative r ∈ Rp is an artificial data item, summarizing a subset Dr of D. The attribute vector of r, rattr, is ideally the average of attribute vectors of data items in Dr. The intersection of these subsets need not be empty.

Fig. 1: Decentralized clustering model

The entire data set can be summarized in each node p, by means of representatives. Each node p is responsible for deriving accurate representatives for part of the data set located near D∩p. For other parts, it solely collects representatives. Accordingly, it gradually builds a global view of D. Each node continuously performs two tasks in
parallel: i) Representative derivation\(^1\), DERIVE and ii) representative collection\(^1\), COLLECT. The two tasks can execute repeatedly and continuously in parallel.

To derive representatives for part of the data set located near \(D^\text{int}_p\), \(p\) should have an accurate and up-to-date view of the data located around each data \(d \in D^\text{int}_p\). In each round of the DERIVE task, each node \(p\) selects another node \(q\) for a three-way information exchange. It should first send \(D^\text{int}_p\) to node \(q\). Node \(p\) then receives from \(q\) data items located in radius \(\rho\) of each \(d \in D^\text{int}_p\), based on a distance function. \(\rho\) is a user-defined threshold, which can be adjusted as \(p\) continues to discover data. In the same manner, it will also send to \(q\) the data in \(D^\text{int}_q\) that lie within the \(\rho\) radius of data in \(D^\text{int}_p\). Knowing some data located within radius \(\rho\) of some internal data item \(d\), node \(p\) can summarize all this data into one representative.

To fulfill the COLLECT task, each node \(p\) selects a random node every \(T\) time units, to exchange their set of representatives with each other. Both nodes store the full set of representatives. Initially, each node has only a set of internal data items, \(D^\text{int}_p\). Thus, the set of representatives at each node is initialized with all of its data items, i.e., \(R_p = D^\text{int}_p\).

The final clustering algorithm is executed on the set of representatives in a node. Node \(p\) can execute the clustering algorithm on \(R_p\), any time it desires, to achieve the final clustering result. In a static setting, continuous execution of DERIVE and COLLECT will improve the quality of representatives causing the clustering accuracy to converge. K-means\(^8\) considers data items to be placed in an \(m\)-dimensional metric space, with an associated distance measure. It partitions the data set into \(k\) clusters, \(C_1; C_2; \ldots; C_k\). Each cluster \(C_j\) has a centroid \(\mu_j\) which is defined as the average of all data assigned to that cluster. The K-means algorithm is executed on a set of representatives, each extracted from data within \(\rho\) distance of a data item, and its ultimate goal at node \(p\) is to compute the mean of data in each cluster. Let \(D_{Ci}\) denote the data items of a typical cluster \(C_i\), and \(R_{Ci}\) denote representatives computed from data in \(D_{Ci}\). If \(D_{Ci}\) is uniform, the expected value of the representatives will be equal to \(\mu_i\).

III. RESULTS

Interface provides the facility to select the data set and to give the number of nodes in the system. Figure 2 shows the main GUI for general distributed clustering. It also provides the facility to set the output file location and to add extra data to the system.

Fig. 2: DCluster GUI

Fig. 3 shows the interface for nodes. This shows status of various tasks in each node, such as derive thread active started/ended, derive thread passive started/ended, data sent details, data receiving details, collect thread active/passive started/ended. Fig. 4 shows the output file. It consists of centroids of each cluster.
Clustering Dynamic and Distributed Dataset using Decentralized Algorithm

(1JSRD/Vol. 4/Issue 04/2016/356)

V. CONCLUSION

Clustering partitions data into groups of similar objects, with high intra-cluster similarity and low inter-cluster similarity. With the progress of large-scale distributed systems, huge amounts of data are increasingly originating from dispersed sources. Analyzing this data, using centralized processing, is often infeasible due to communication, storage, and computation overheads. DCluster is a general distributed clustering method, which is capable of clustering dynamic and distributed data sets in a decentralized manner. Nodes continuously cooperate through decentralized gossip-based communication to maintain summarized views of the data set. Dynamic nature of data demands a continuously running algorithm which can update the clustering model efficiently, and at a reasonable pace. This algorithm enabled nodes to gradually build a summarized view on the global data set, and execute clustering algorithms to build the clustering models. The final clustering algorithm is executed on the set of representatives in a node. DCluster can be customized for other clustering types such as hierarchical or grid-based clustering.

REFERENCES