Reactive Power Compensation of Doubly Fed Induction Generator using STATCOM in Grid Side

Mathusoothan.T1 Dr. R. Karthik2
1,2Department of Electrical and Electronics Engineering
1,2Valliammai Engineering College, Chennai

Abstract— Wind energy generation with Doubly Fed Induction Generator is a dominant factor in wind forms. High penetration and variable fault conditions DFIG absorbs more reactive power from the grid. Applying a set of optimized control parameters, the reactive power of the systems shall be further enhanced. Due to presence of variable load with fault conditions reactive power is varied in the system. Varied reactive power is compensated by the Static Synchronous Compensator (STATCOM). In DFIG, the Real and reactive power are modified based on rotor speed and load variations. The simulation result shows the effectiveness and performance of the DFIG with Static Synchronous Compensator (STATCOM) with their control techniques.

Key words: Doubly Fed Induction Generator (DFIG), Grid Side Converter (GSC), Rotor Side Converter (RSC), Static Compensator, Real and Reactive Power

I. INTRODUCTION

The development of renewable energy for sustainable, efficient and clean electric power systems has become a critical research topic worldwide. Variable speed wind turbines employing Doubly Fed Induction Generator (DFIG) is the most popular technology in currently installed wind turbines. With the continuous increase in penetration level of DFIG wind turbines, power system stability becomes an important issue which needs to be properly investigated. Wind power generation with DFIG is optimal one and high penetration of this DFIG creates some instability in grid side based on reactive power variation. By replacing Variable Speed Wind Turbine (VSWT) generation with equivalently rated synchronous units, the small-signal stability and transient stability of the system was assessed. But efficiency of the system is reduced and it creates more stress in gear system. Power electronic converter of the DFIG acts as an interface between DFIG generator and the grid. And increased penetration of DFIG, the effective inertia of the system will be reduced. DFIGs are not synchronously coupled to the power systems, the wind turbines do not participate in electromechanical oscillations. This DFIG frequency of the stator is based on the frequency of the rotor and it is varied by the controllers. If wind speed is less than the rated speed, frequency of the rotor is increased. It is ensured in eq1.

\[
\text{fsator} = (\text{frotor} \times \text{Npoles}/120) + \text{frotor} \quad (1)
\]

Wind speed is more than the rated speed, frequency of the rotor is reduced. It is ensured in eq2.

\[
\text{fsator} = (\text{frotor} \times \text{Npoles}/120) - \text{frotor} \quad (2)
\]

The following equation represents the rotor frequency changes in variable wind speeds,

\[
\text{frotor} = \text{fnetwork} - (\text{frotor} \times \text{Npoles}/120) \quad (3)
\]

In order to promote the integration of wind farms into the electrical network, Flexible AC Transmission Systems, FACTS, are widely used. The FACTS STATCOM system is one of them. Numerous studies have shown that transient and steady state stability can be improved by controlling the voltage of the connection point of the wind farm to the network. The STATCOM system stimulates voltage stability by reactive power regulation. STATCOM provides or absorbs reactive power to or from the grid to compensate small voltage variations at the connection point of the wind farm with the grid. STATCOM is also used when a voltage dip occurs. Many studies show that STATCOM helps the wind farm to stabilize voltage especially after a voltage dip occurs. The function of STATCOM here is to respond quickly to maintain the voltage at a certain threshold level, preventing voltage collapse in situations of voltage disturbances. In order to compensate this voltage fluctuation the wind farm can provides reactive power. The reactive power referenced by the wind farm control is proportional to the voltage deviation at the connection point of the wind farm about a constant set point. The demand for this power can be supplied by the generators or by the STATCOM. In STATCOM is used to solve power quality problems on transmission lines. In the benefits of installing a STATCOM in a wind farm to improve the behavior of the park when facing fault ride through situations.

II. METHODOLOGY

In this method Reactive power compensation is improved by design of STATCOM and these control technique. Grid side converter implementation is based on the reactive power modifications and it is also compensate the grid reactive power variations.

![Fig. 1: DFIG with RSC-GSC control](image)

Rotor side converter implementation is based on the frequency, real and reactive power modifications. DFIG speed variations are based on the RSC output current frequency. This two converter pulse generation is controlled by PWM technique.
III. MODELING OF DFIG

The DFIG is comprised of a wound rotor induction generator with a rotor coupled back-to-back converter system. The rotor-side converter (RSC) is connected to the GSC using a DC link capacitor. During grid disturbances, due to the magnetic coupling between the stator and the rotor, a high transient rotor current is excited. Hence, to avoid damage to the converter, the RSC is short circuited using a resistor bank, which is commonly known as the crowbar [10]. The crowbar effectively decouples the back-to-back converter unit from the wound rotor induction generator, and enables the DFIG to operate as a squirrel cage induction motor. Transition from a DFIG to SCIG absorb more reactive power from the grid so this condition GSC-DC link section act as a STATCOM and supply reactive power to the DFIG.

And the wind flow variations are creating the instability in rotor function and also create torsional vibrations by the process of electromechanical interactions. To eliminate this problem Rotor Side Converters (RSC) are used to modify the frequency, real and reactive power of DFIG rotor excitation current. These processes are obtained by the Rotor Side (RSC) and Grid Side Converter (GSC) control methods [6].

A. Modeling of Converters Control System

For controlling the voltage frequency control, we need to control the rotor side and grid side converters that in turn control the DFIG. The objective of the RSC is to regulate both the stator active and reactive powers, P_s and Q_s, independently [4], [7]. The reactive power control using the RSC can be applied to keep the stator voltage V_s within the desired range, when the DFIG feeds into a weak-power system insufficient local reactive power absorbed from grid.

![Fig. 2: Rotor Side converter control][12]

1) Stator Voltage Equations:

$$V_{qs} = p_i q_s + w_l q_s + r_s i_q$$ \hspace{1cm} (4)

$$V_{ds} = p_i d_s - w_l q_s + r_s i_q$$ \hspace{1cm} (5)

2) Stator Flux Equations:

$$\lambda q_s = (L_i + L_m) i_q + L_m I_q$$ \hspace{1cm} (6)

$$\lambda d_s = (L_i + L_m) i_d + L_m I_d$$ \hspace{1cm} (7)

When the DFIG feeds into a strong power system, the command of Q_s can be simply set to zero. Fig. 2 shows the overall vector control scheme of the RSC. In order to achieve independent control of the stator active power P_s and reactive power Q_s by means of rotor current regulation, the instantaneous three-phase rotor currents i_{abc} are sampled and transformed to dq components i_{dr} and i_{qr} in the stator-flux oriented reference frame[1],[3]. The reference values for i_{dr} and i_{qr} can be determined directly from Q_s and ω commands, respectively. The actual dq current signals (i_{dr} and i_{qr}) are then compared with their reference signals to generate the error signals, which are passed through two proportional-integral (PI) controllers to form the voltage signals v_{dr} and v_{qr}.

3) Rotor Voltage Equations:

$$V_{q_r} = p_i q_r + (\omega_o - \omega) \lambda d_s + r_s i_q$$ \hspace{1cm} (8)

$$V_{d_r} = p_i d_r - (\omega_o - \omega) \lambda q_r + r_s i_d$$ \hspace{1cm} (9)

4) Rotor Flux Equations:

$$\lambda q_r = (L_i + L_m) i_q + L_m I_q$$ \hspace{1cm} (10)

$$\lambda d_r = (L_i + L_m) i_d + L_m I_d$$ \hspace{1cm} (11)

The two voltage signals are compensated by the corresponding cross coupling terms to form the dq voltage signals v_{dr} and v_{qr}. They are then used by the PWM module to generate the IGBT gate control signals to drive the rotor-side IGBT converter. The objective of the GSC is to keep the dc-link voltage constant regardless of the magnitude and direction of the rotor power. In this paper, the GSC control scheme is also designed to regulate the active power P_g exchanged between the GSC and the grid. During normal operation, the GSC is considered to be reactive neutral by setting $Q_g = 0$.

![Fig. 3: Grid Side converter control][12]

This consideration is reasonable because the VFC rating is only 25%–30% of the generator rating and the VFC is primarily used to supply the active power from the rotor to the power grid. However, the reactive power controllability of the GSC can be useful during the process of voltage reestablishment, after a grid fault has been cleared and the RSC has been blocked. Fig. 3 shows the overall control scheme of the GSC. The actual signals of the dc-link voltage and the reactive power are compared with their command values to form the error signals, which are passed through the PI controllers to generate the reference signals for the d-axis and q-axis current components, respectively. The instantaneous ac-side three-phase currents of the GSC are sampled and transformed into dq current components i_{dg} and i_{qg} by applying the synchronously rotating reference frame transformation.

The actual signals are then compared with the corresponding reference signals to form the error signals, which are passed through two PI controllers. The voltage signals are compensated by the corresponding cross coupling terms to form the dq voltage signals v_{dg} and v_{qg}[2],[5],[9]. They are then used by the PWM module to generate the IGBT gate-control signals to drive the grid-side IGBT converter.

B. Modeling of STATCOM

This thesis investigates the use of a Static Synchronous Compensator (STATCOM) along with wind farms for the
The purpose of stabilizing the grid voltage after grid-side disturbances such as a three phase short circuit fault, temporary trip of a wind turbine and sudden load changes.

During the activation of crowbar STATCOM used to supply the reactive power to the Point of Common Coupling (PCC) and it reduces absorption of reactive power from the grid. The strategy focuses on a fundamental grid operational requirement to maintain proper voltages at the point of common coupling by regulating voltage [5],[8]. The DC voltage at individual wind turbine (WT) inverter is also stabilized to facilitate continuous operation of wind turbines during disturbances.

Under these conditions Standard devices used to supply the needed reactive recompense are mechanically switched capacitor banks. It generates a set of balanced three-phase sinusoidal voltages at the fundamental frequency, with rapidly controllable amplitude and phase angle. Flexible AC transmission system (FACTS) devices can be use [2]. They are capable to provide quick active and reactive power compensations to power systems, and hence can be used to provide voltage support and enhance power oscillation damping. Properly located FACTS devices enable additionally efficient employment of existing transmission lines and the FACTS family, the shunt FACTS devices such as the static synchronous compensator (STATCOM) has been greatly used to provide flat and fast steady state and transient voltage control at points in the network.

Real and Reactive Power Equations:

\[P = V_s i_s \sin(\alpha) Xs \]
(12)

\[Q = (V_s \cos(\alpha) - V_s i) / Xs \]
(13)

The VSC topologies are preferred in STATCOM applications. For large scale wind farm application, higher voltage rating ones are desirable. This paper adopts voltage source STATCOM as a dynamic reactive power compensator.

<table>
<thead>
<tr>
<th>S. No</th>
<th>PARAMETERS</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Generated voltage</td>
<td>120 KV</td>
</tr>
<tr>
<td>2</td>
<td>Grid voltage</td>
<td>565 V</td>
</tr>
<tr>
<td>3</td>
<td>DFIG power</td>
<td>1.5 MW</td>
</tr>
<tr>
<td>4</td>
<td>No of DFIG</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Total DFIG power</td>
<td>9 MW</td>
</tr>
<tr>
<td>6</td>
<td>Pars of poles</td>
<td>3 p</td>
</tr>
<tr>
<td>7</td>
<td>Wind speed variation</td>
<td>10-30 m/s</td>
</tr>
<tr>
<td>8</td>
<td>Stator resistance</td>
<td>0.023 Rs(pu)</td>
</tr>
<tr>
<td>9</td>
<td>Stator inductance</td>
<td>0.18 Ls(pu)</td>
</tr>
<tr>
<td>10</td>
<td>Rotor resistance</td>
<td>0.016 Rr(pu)</td>
</tr>
</tbody>
</table>

Table 1: Parameters of DFIG

<table>
<thead>
<tr>
<th>S. No</th>
<th>Status</th>
<th>Real Power</th>
<th>Reactive Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Without Static Synchronous Compensator (STATCOM)</td>
<td>Unstable 0.7 pu</td>
<td>Unstable</td>
</tr>
<tr>
<td>2</td>
<td>With Static Synchronous Compensator (STATCOM)</td>
<td>0.9(pu) -0.5 to +0.5(pu)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Output Parameters of DFIG

Regulated shunt reactors equipped with a tap-changer as used for voltage control with a transformer. Using such a “regulated shunt-reactor”, a more smooth control of reactive power can be achieved [6],[7]. A study presented in shows the feasibility of this tool for reactive power control with large wind power plants. Static synchronous compensator an STATCOM is typically a fixed shunt capacitance in parallel with reactance that is controlled using IGBT. This type of controller is made using static components that shown in figure 4. This STATCOM units may have short-time overload capabilities for 2 to 4 seconds that shown in figure 4. The VAR output is a linear function of the voltage, VARs decrease linearly with the voltage (90% voltage will provide 90% VAR capability) since they are constant current controllers.

IV. SIMULATION

![Fig. 6: Simulation of DFIG with STATCOM and control techniques](image-url)
V. SIMULATION RESULTS

Fig. 7: Simulation result of DFIG Real and Reactive power without STATCOM.
This result represents the load variations and three faults create the instability in real and reactive power. It is shown in fig7.

Fig. 8: simulation result of DFIG real and reactive power with STATCOM.
This result represents the real and reactive power variations are compensated by the insertion of STATCOM in grid side. It is shown in fig8.

Fig. 9: simulation result of DFIG’s grid input voltage.
This simulation result fig 9 represents the Output voltage and current of the DFIG in load variation time 0.01 to 0.05. After the compensation these two functions are get normal operating condition.

Fig. 10: simulation result of DFIG variable rotor speed.

VI. CONCLUSION

High penetration and variable fault conditions DFIG absorbs more reactive power from the grid. In this research work, we have utilized STATCOM to compensate the reactive power variation in two different operating conditions. Reactive power insertion and absorptions are based on the fault occurrence in DFIG. This reactive power is compensated by modifying the reactive power in point of common coupling using STATCOM. PI controller based control techniques are designed to control the STATCOM performances.

REFERENCES