
IJSRD - International Journal for Scientific Research & Development| Vol. 4, Issue 02, 2016 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 934

Search-Based Test Data Generation for Object- Oriented Programming
R.P.Mahapatra1 A.Kulothungan2 Priyanka Sachdeva3 Pratibha Dabas4

1Professor & HOD 2Assistant 3,4Professor
1,2,3,4Department of Computer Science & Engineering

1,2,3,4SRM University
Abstract— Test-data generation for object-oriented

programming (OOP) is challenging due to the features of

OOP, e.g., abstraction, encapsulation, and visibility that

prevent direct access to some parts of the source code. To

address this problem we present a new automated search-

based software test-data generation approach that achieves

high code coverage for the source code and reduces the

search space. For that we first describe the test-data

generation problem for object oriented testing to generate

relevant sequences of method calls. In this paper, proposed

technique uses means-of-instantiation, diversification

strategy and seeding strategy for object oriented generation

and sequence caller for search space reduction. Finally, we

show that our technique is more efficient than the

randomized technique as it reduces the search space better

than the randomized one. It also uses a seeding strategy and

a diversification strategy to increase the likelihood to reach a

test target.

Key words: Oriented Programming, Based Test Data

Generation

I. INTRODUCTION

A. Software Testing

Software testing involves the execution of a software

component or system component to evaluate one or more

properties of interest. It’s the most important part of the

software development also time consuming and tedious

process. It’s most expensive part of testing is test data

generation. Due to the complex features of object-oriented

programming languages (OOP), e.g., abstraction,

encapsulation, and visibility it prevents the direct access to

some parts of the source code. To address this problem, a

test-data generator is needed to perform(1) instantiation of

the classes; (2) perform a sequence of method calls to put

the instance of the class under test in a desired state (i.e., a

state that may help to reach the test target); and, (3) call a

method that may reach the test target.

B. Search-Based Software Testing

We are using the Search Based Software Testing (SBST) to

address the problem of automating test-data generation.

Search-Based Software Testing is the use of a meta-heuristic

optimizing search technique, such as a Genetic Algorithm,

to automate or partially automate a testing task; for example

the automatic generation of test data. SBST has been

successfully applied to solve the problem of test-data

generation which translates it into a search problem by

providing a feasible solution to the original problem and

searching an actual solution using a search heuristic.

C. Seeding Strategy

For each primitive data type or string, it collects constants

from the source code, generates new values, then seeds them

while generating data. It defines a seeding probability for

each data type and each constant according to the number of

collected occurrences of the constants. Also, it seeds the null

constant with a constant probability while generating

instances of classes.

D. Diversification Strategy

This strategy generates the needed instances of a given class

by using different means of- instantiations. The number of

reuses of a same means-of-instantiation depends on its

complexity and computes a representative complexity

measure for each means of- instantiation. Initially, it

supposes that any class requires a constant complexity to be

instantiated and a means-of-instantiation requires the total

complexity of its arguments, then it dynamically adjusts this

measure at each attempt of instantiation.

II. PROBLEM DESCRIPTION

A. Existing Problem

The earlier techniques used to reduce the search space was

the random technique. With random approach, the search

space is large because of four reasons:

1) There is no restriction on methods to call;

2) There is no restriction on the length of sequences of

method calls;

3) The order of method calls is undefined;

4) The possible instances of a class under test or an

argument may be “unlimited”.

B. Proposed Solution

To address above problem we present a new automated

search-based software test-data generation approach that

achieves high code coverage for the object oriented code

and reduces the search space.

So, in this paper we are doing the following-

1) Identify the test data generation problem in unit

testing.

2) Generate the instances of the classes.

3) Test data generation of unit testing.

4) Block Diagram

Fig. 1: Overall Diagram

Search-Based Test Data Generation for Object- Oriented Programming

 (IJSRD/Vol. 4/Issue 02/2016/265)

 All rights reserved by www.ijsrd.com 935

Fig. 1 shows the overall diagram of our proposed

approach. Firstly, we identify the problem i.e, the source

code of the object oriented program. Then through the help

of instance generator we create the means of instantiation,

using diversification strategy and seeding strategy for

removing the existing problem from our source code. Then

by this output we call the sequence caller to generate the

sequence of the methods. The output of sequence caller now

becomes the input of the target caller to call the method

having our target. Now output of target caller is used as the

input for the test data generation to generate the required test

data for the object oriented classes.

III. METHODOLOGY

Our proposed technique uses different methodologies:-

1) Instance generator

2) Sequence caller

3) Test data generation

A. Instance Generator

A test-data generation problem is an instantiation of the

Object oriented class and a sequence of method calls on that

instance. Calling a constructor or a method requires some

instances of classes. The instance generator implements the

generation of means-of-instantiation, the diversification

strategy and theseeding strategy.

Fig. 2: Instance Generator

B. Sequence Method Generator

The sequence method caller is used to call the sequence

from the available sequences, according to which the

methods will be called, unlike the random approach which

called any method without any sequence. The following is

its algorithm.

Fig. 3: Sequence Method Call

C. Test Data Generator

This component operates and coordinates other components

to generate test data by calling the method having the target

method.It implements the skeleton of the whole process of

test data generation.

The following is the algorithm for test data generation.

Fig. 4: Test Data Generation

IV. CASE STUDY

The following is the case study that we are considering in

our research paper.

A. Hybrid Inheritance

Our case study has the hybrid inheritance in which there are

six classes, having base classes and derived classes which

Search-Based Test Data Generation for Object- Oriented Programming

 (IJSRD/Vol. 4/Issue 02/2016/265)

 All rights reserved by www.ijsrd.com 936

are inherited from the super class. Each class hasit’s own

functions, tasks and variables and also inherited from above

base classes. A is the superclass B and C classes are derived

from it, D is derived from both B and C so has functions and

variables of both the classes, E and F classes are derived

from class D. Class A has the task 1, B has task 2, class C

has task 3, class D has task 4,5,6, E class has task 8,9 and

class F has task 10,11,12. Each tasks having functions and

variables which are either independent or are dependent on

other base classes.

Fig. 6:

B. Overall Test Generation

There are six classes each having two instances and every

instance has three values and we can generate all possible

test cases for them. The test cases that we have evaluated are

658 upto class D and 3564 test cases upto class E and after

removing the common ones we get 2916 test cases. The total

test cases are 6480.

C. Instance Generator

Here the instance generator algorithm is used where the

input is the set of instances for every class. Now

generateinstances of dependent classes for target and the

output will contain the set of instances for the dependent

classese.g, class A has two instances, each instance having

three values and functions needed to get target. We have

taken the target in class E. The total test cases needed to

achieve the target is 3564.

D. Sequence Generator

The constructor level and functional level dependencies are

considered here.

In the constructor level dependency, we have

taken the constructors of the classes and the dependencies

are checked with the other classes. Class A has constructor

A() having task 1, which is then used by classes B and C

having their constructors B() and C() with task 2 and 3

respectively. Like this F(T10), E(T7), D(T4) and D(T5)

dependent on B(T2) which is dependent on A(T1). D(T2) and

F(T11) dependent on C(T3) which is dependent on A(T1).

E(T9) dependent on D(T5). E(T8), F(T11), F(T12) dependent

on D(T6), only A(T1) is independent as it’s the super class.

Fig. 7: Constructor level dependency

Random dependency structure is taken for the

target task which randomly selects the sequence of methods

which leads to the target task. In our case we have two

sequence of methods leading to the target task (Fig.4), the

target is present in the class F, each class has two objects,

two independent paths in the random dependency from

which random dependency will choose any one of these two

paths.

Fig. 8: Random Dependency

Two possible sequences are as follows

Fig. 9: Path 1

Fig. 10: Path 2

Dependency Sequence callerwhich takes only the

functions which are dependent on other class functions. In

our case there is only one such path which is as follows. The

targetis in the T11 ,so we perform sequence caller in bottom

up manner to check whether the target class has variables of

the above base classes, if it has then again check that class

for the variables of above class and like this proceed.

The algorithm that we use here is the sequence

method call which has the set of dependent class as the

input. Generating all the possible sequences by the random

sequence method and selecting any sequence from the

possible sequences and by dependent sequence method and

checking the target in the class and variables of the above

classes. The output will be the sequence of dependent

methods.

Fig. 11: Path 3

E. Test Data Generation

Test data generation using random method and dependency

method.

Random Method for

path 1

Random

Method for

path 2

Dependency

Method

Class

es

and

Tasks

To

tal

Te

st

Ca

ses

Class

es

and

Tasks

To

tal

Te

st

Ca

ses

Sea

rch

spa

ce

for

rep

ort

Sea

rch

spa

ce

for

rep

ort

Class

es

and

Tasks

To

tal

Te

st

Ca

ses

Sea

rch

spa

ce

for

rep

ort

Search-Based Test Data Generation for Object- Oriented Programming

 (IJSRD/Vol. 4/Issue 02/2016/265)

 All rights reserved by www.ijsrd.com 937

A(T1) 12 A(T1) 12 12 12 A(T1) 12 12

B(T2) 36 C(T3) 36 36 36 C(T3) 36 36

D(T4,

T5,T6)

12

6

D(T4,

T5,T6)

12

6

37

8

37

8

D(T4,

T5,T6)

12

6

37

8

E(T7,

T8,T9)

12

96

E(T7,

T8,T9)

12

96

38

88

38

88

E(T7,

T8,T9)

12

96

38

88

∑(test

cases

&

searc

h

space

)

14

70

∑(test

cases

&

searc

h

space

)

14

70

43

14

43

14

∑(test

cases

&

searc

h

space

)

14

70

43

14

Table 1: Random Generation and Dependency Generation

V. GRAPH ANALYSIS

The table 2 shows the number of tests shoots, test cases and

search space.

Test shoots Test Cases Search Space

Overall 3564 6069

Random 1 1470 4314

Random 2 1470 4314

Dependency 300 300

Table 2: Test cases

Fig. 9 and Fig. 10 are the two graphs showing the test

shoots, where,

TS1 – overall test shoot,

TS2 – random test shoot for path 1,

TS3 - random test shoot for path 2 and

TS4 – dependency test shoot

Fig. 9 graph shows number of test cases on y axis

and test shoots on x axis. TS1, TS2, TS3 and TS4 has 3654,

1470, 1470 and 300 test cases respectively. Fig. 10 graph

shows number of search space on y axis and test shoots on x

axis.TS1, TS2, TS3 and TS4 covers 6069, 4314, 4314 and

300 search spaces respectively.

Fig. 12:

Fig. 13:

VI. CONCLUSION AND FUTURE WORK

Earlier search-based software testing has been used to solve

the problem of automated test data generation for procedural

programming as well as for object-oriented programming.

Yet, test-data generation for OOP is challenging due to the

features of OOP, e.g., abstraction, encapsulation, and

visibility that prevent direct accessto some parts of the

source code. In this paper we have presented a new

automated search-based software testdata generation

approach that achieves high code coverage for the source

code and reduces the search space.

In our research paper we have considered the

function dependency and class dependency but not

considered the access modifier and abstractions, so in future

the research can be focused on the above object oriented

feature for reducing the search space.

REFERENCES

[1] AbdelilahSakti, Gilles Pesant, and Yann-

Ga€elGu_eh_eneuc, Senior Member, IEEE “Instance

Generator and Problem Representation to Improve

Object Oriented Code Coverage” in IEEE Transactions

on software engineering IEEE, vol. 41, no.3, March

2015

[2] N. Alshahwan and M. Harman, “Automated web

application testing using search based software

engineering,” in Proc. 26th IEEE/ACM Int. Conf.

Autom. Softw. Eng.,2011,pp. 3–12.

[3] M. Alshraideh and L. Bottaci, “Search-based software

test data generation for string data using program-

specific search operators,”Softw. Testing, Verification

Rel., vol. 16, no. 3, pp. 175–203,2006.

[4] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li, “Tool

support for randomized unit testing,” in Proc. 1st Int.

Workshop Random Testing, 2006, pp. 36–45.

[5] J. H. Andrews, T. Menzies, and F. C. Li, “Genetic

algorithms for randomized unit testing,” IEEE Trans.

Softw. Eng., vol. 37, no. 1,pp. 80–94, Jan./Feb. 2011.

[6] A. Arcuri and L. Briand, “A hitchhiker’s guide to

statistical tests for assessing randomized algorithms in

software engineering,” Softw. Testing, Verification

Rel., vol. 24, no. 3, pp. 219–250, 2014.

[7] A. Arcuri and G. Fraser, “On parameter tuning in search

basedsoftware engineering,” in Proc. 3rd Int. Conf.

Search Based Softw.Eng., 2011, vol. 6956, pp. 33–47.

Search-Based Test Data Generation for Object- Oriented Programming

 (IJSRD/Vol. 4/Issue 02/2016/265)

 All rights reserved by www.ijsrd.com 938

[8] A. Arcuri and X. Yao, “Search based software testing of

object oriented containers,” Inf. Sci., vol. 178, no. 15,

pp. 3075–3095, 2008.

[9] S. Barbey and A. Strohmeier, “The problematics of

testing object oriented software,” in Proc. 2nd Conf.

Softw. Quality Manage., 1994, vol. 2, pp. 411–426.

[10] D. Binkley and M. Harman, “Analysis and visualization

of predicate dependence on formal parameters and

global variables,” IEEE Trans. Softw. Eng., vol. 30, no.

11, pp. 715–735, Nov. 2004.

[11] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo,”

in Proc. 30th Int. Conf. Softw. Eng., 2008, pp. 71–80.

[12] L. Clarke, “A system to generate test data and

symbolically execute programs,” IEEE Trans. Softw.

Eng., vol. SE-2, no. 3, pp. 215– 222, Sep. 1976.

[13] C. Csallner and Y. Smaragdakis, “Jcrasher: An

automatic robustness tester for Java,”Softw.:Pract. Exp.,

vol. 34, no. 11, pp. 1025– 1050, 2004.

[14] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite

generation for object-oriented software,” in Proc. 19th

ACM SIGSOFT Symp. 13th Eur. Conf. Found. Softw.

Eng., 2011, pp. 416–419.

[15] G. Fraser and A. Arcuri, “The seed is strong: Seeding

strategies in search-based software testing,” in Proc.

IEEE 5th Int. Conf. Softw. Testing, Verification

Validation, 2012, pp. 121-130.

[16] G. Fraser and A. Arcuri, “Evosuite at the SBST 2013

tool competition,” in Proc. IEEE Int. Conf. Softw.

Testing Verification ValidationWorkshop, 2013, pp.

406–409.

[17] G. Fraser and A. Arcuri, “Whole test suite generation,”

IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 276–291,

Feb. 2013.

[18] G. Fraser and A. Zeller, “Exploiting common object

usage in test case generation,” in Proc. IEEE 4th Int.

Conf. Softw. Testing, Verification Validation, 2011, pp.

80–89.

[19] G. Fraser and A. Zeller, “Mutation-driven generation of

unit tests and oracles,” IEEE Trans. Softw. Eng., vol.

38, no. 2, pp. 278–292, Mar./Apr. 2012.

[20] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed

automated random testing,” ACM SIGPLAN Notices,

vol. 40, pp. 213–223, Jun. 2005.

[21] M. Harman, C. Fox, R. Hierons, L. Hu, S. Danicic, and

J. Wegener, “Vada: A transformation-based system for

variable dependence analysis,” in Proc. 2nd IEEE Int.

Workshop Source Code Anal. Manipulation, 2002, pp.

55–64.

[22] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and

J. Wegener, “The impact of input domain reduction on

search-based test data generation,” in Proc. 6th Joint

Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp.

Found. Softw. Eng., 2007, pp.155–164.

[23] B. Korel, “Automated software test data generation,”

IEEE Trans. Softw. Eng., vol. 16, no. 8, pp. 870–879,

Aug. 1990.

[24] H. B. Mann and D. R. Whitney, “On a test of whether

one of two random variables is stochastically larger

than the other,” Ann.Math. Stat., vol. 18, pp. 50–60,

1947.

[25] P. McMinn, “Search-based software test data

generation: A survey,” Softw. Testing Verification Rel.,

vol. 14, pp. 105–156,2004.

