Flexural Behaviour of RC Beam Externally Bonded with Cold Formed Steel Sheet using Epoxy

Venkatachalam.A¹ Manu. S. S²
¹,²Department of Structural Engineering
¹,²Valliammai Engineering College Chennai, India

Abstract— Strengthening of structures have gained importance in the past few decades owing to the high cost involved in their reconstruction and also to ensure safety by improving their strength under adverse conditions. This paper deals with one such strengthening method based on the external bonding of the reinforcement through cold formed steel sheets. Cold forming ensures that the material has enough surface smoothness to avoid stress concentrations in addition to high tolerance and concentricity. The aim of this paper is to study the influence of the externally bonded cold formed steel sheets on the flexural behaviour of the RC beams. For this purpose, flexural strength of the control beams and the beams bonded with the cold formed steel sheets are determined by experimental means and will be compared to validate the novelty in the use of the externally bonded steel sheets on the surface of the beams by means of epoxy. This paper aims to bring out the novel advantages of using cold formed sheets for strengthening the beams through the critical review of literature and observe their behaviour through experimental means.

Key words: Strengthening, Cold formed sheets, Flexural behaviour, External bonding

I. INTRODUCTION

The aim of the study was to investigate the flexural strength of RC beam externally bonded with cold formed steel sheets with laboratory loading tests under two point loading. The sheets were attached externally on the tensile side and side faces of the beam. The sheet bonding is adopted in this study as it is found to be a rapid method to increase the bending and shear capacity of the beam.

II. PRINCIPLE OF PLATE BONDING TECHNIQUE

Strengthening by plate bonding is mainly applied in order to increase the flexural capacity and shear capacity: steel plates are bonded to the tension side of reinforced concrete structure, thus act as an additional longitudinal reinforcement and as a result flexural capacity increases. In the similar way as the above, shear capacity is found to increase by bonding steel plates to the side faces of reinforced concrete structure.

III. SPECIMEN AND TEST ARRANGEMENTS

In the experimental program, reinforced concrete beam was designed as doubly reinforced section using M25 grade concrete and Fe 415 grade steel and having cross section 100mm x 150mm by limit state method. The tension reinforcement of 2nos-12mmdia bar, compression reinforcement of 2nos-12mmdia bar and stirrups having 8mm dia at 200mm centre to centre was found by limit state design. The steel sheets were bonded on the tensile side and side faces of the beam. The thickness of cold formed sheet, which were bonded on RC beams were 1.5mm and 2mm respectively. The width of the bottom sheet was 90mm in every case. The length of beam was 1200mm and the length of the bonded sheet is 1150 mm. The bonding faces of the steel plates and beam surface are roughened and cleaned thoroughly. Then epoxy adhesive (Sikadur-31) is mixed in accordance with the manufacturer’s instructions. The epoxy is uniformly spread all over the roughened web of the beams and the steel plates to a thickness of 1 mm and the plates are then bonded to the beams. After bonding operations are completed, specimens are cured for 15 days under laboratory conditions before testing. The span length of the beams in loading tests was 1200 mm and two-point loading test was conducted. The configuration for test specimen and load arrangement is presented in Fig. 1.

Fig. 1: Different Configuration

Fig. 2: Two point load setup

The manufacturing details of the beams are presented in Table 1.
### Table 1: Manufacturing Details

<table>
<thead>
<tr>
<th>Specimen designation</th>
<th>Thickness of plate</th>
<th>Width of plate at bottom</th>
<th>Width of plate at side faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference beam</td>
<td>Without plate</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strengthened beams with bottom plate</td>
<td>1.5mm</td>
<td>90mm</td>
<td>130mm</td>
</tr>
<tr>
<td>Strengthened beams with bottom plate</td>
<td>2mm</td>
<td>90mm</td>
<td>130mm</td>
</tr>
<tr>
<td>Strengthened beams with bottom plate</td>
<td>1.5mm</td>
<td>90mm</td>
<td>130mm</td>
</tr>
<tr>
<td>Strengthened beams with bottom plate</td>
<td>2mm</td>
<td>90mm</td>
<td>130mm</td>
</tr>
</tbody>
</table>

### IV. TEST RESULTS

The beams are tested for their ultimate strengths under two point loading system. The effect on ultimate flexural strengths is studied by variations in thickness of cold formed steel sheets (1 and 1.5 mm). In the case of control beam (without sheet) which fails as soon as the first critical shear cracks forms. The failure pattern and load–deflection diagram for control beam is given below.

In the case of strengthened beam with 1.5 mm sheet at the bottom face which takes additional load compared to control beam and also it provide good ductility. The failure occurred after the formation of shear crack and debonding of bottom sheet occured just before the ultimate load. The failure pattern and load–deflection diagram for strengthened beam is given in fig below.

In the case of strengthened beam with 2 mm cold formed steel sheet at the bottom face which took additional load compare to control beam and also it provides less ductility compared to 1.5 mm thickness. The failure occurs after the formation of shear crack. The failure pattern and load–deflection diagram for strengthened beam is given in fig below.
Fig. 8: Typical failure of RC strengthened beam with continuous steel sheet (2 mm) at bottom

In the case of strengthened beam with 1.5 mm sheet at side and bottom face of the beam, which took additional load compared to control beam and also it provides good ductility. The debonding of side plate occurs at 38 kN and then cracks occurred near the support. The failure pattern and load–deflection diagram for strengthened beam is given in fig below

![Load Deflection-Strengthened beam with 1.5 mm plates at bottom and side faces](image)

Fig. 9:

Fig. 10: Typical failure of RC strengthened beam with continuous steel sheet (1.5 mm) at bottom and Side faces

In the case of strengthened beam with 2 mm sheet at side and bottom face of the beam, which took additional load compared to control beam and it provides less ductility compare to 1.5 mm thickness sheet. The debonding of side plate occurred at about 50 kN. The failure occurred after the formation of shear crack and debonding of bottom sheet occur just before the ultimate load. The failure pattern and load–deflection diagram for strengthened beam is given in fig below

![Load Deflection-Strengthened beams with 2 mm plates at the bottom and side faces](image)

Fig. 11:

Fig. 12: Typical failure of RC strengthened beam with continuous steel sheet (2 mm) at bottom and side faces

V. COMPARISON OF CONTROL AND STRENGTHENED BEAM

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Ultimate Load</th>
<th>Percentage Increase In Strength</th>
<th>Maximum Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference Beam</td>
<td>32 KN</td>
<td>-</td>
<td>11.5 mm</td>
</tr>
<tr>
<td>Strengthened Beam with 1.5 mm plate at bottom</td>
<td>52 KN</td>
<td>62.5%</td>
<td>24 mm</td>
</tr>
<tr>
<td>Strengthened Beam with 2 mm plate at bottom</td>
<td>56 KN</td>
<td>75%</td>
<td>17.65 mm</td>
</tr>
<tr>
<td>Strengthened Beam with 1.5 mm plate at bottom and side faces</td>
<td>62 KN</td>
<td>93.75%</td>
<td>26.75 mm</td>
</tr>
<tr>
<td>Strengthened Beam with 2 mm plate at bottom and side faces</td>
<td>68 KN</td>
<td>118%</td>
<td>6.9 mm</td>
</tr>
</tbody>
</table>

Table 2: Comparison of Control and Strengthened Beam
VI. CONCLUSION

From experimental investigations that the strengthened beams exhibited more strength and ductility in comparison to the control beams and also it can be inferred from observations that lesser the thickness of the plate used, greater is the ductility and lesser is the stiffness. Also marked improvements in the strength are observed when the steel plates are bonded at the side faces too in comparison to that of case of bottom face alone.

More investigations have to be carried out in the future to address the problem of the debonding in relation to the bonding surface and epoxy thickness. Also shear failure is one more aspect whose has to be studied with respect to the failure mode of the strengthened beam in light of the expected flexural failure.

REFERENCES


