Increasing Intelligene of Viral Marketing in Social Network using Information Diffusion

S. N. Salunkhe¹ A. V. Chavan² R. P. Choudhar³ U. S. Lathor⁴
¹,²,³,⁴Department of Computer Engineering
⁵S.B. Patil C.O.E. Indapur, 413106, Savitribai Phule, Pune University, Maharashtra, India

Abstract—The rising of mobile social networks opens opportunities for infectious agent selling. However, before absolutely utilizing mobile social networks as a platform for infectious agent selling, several challenges have to be compelled to be addressed. During this paper, we have a tendency to address the matter of distinguishing a little variety of people through whom the knowledge will be subtle to the network as presently as potential, spoken because the diffusion reduction downside. Diffusion reduction beneath the probabilistic diffusion model will be developed as AN uneven k-center downside that is NP-hard, and also the best-best-known approximation algorithmic rule for the uneven k-center downside has approximation quantitative relation of log n and time complexity O(n5). Clearly, the performance and also the time complexity of the approximation algorithmic rule don’t seem to be satisfiable in large-scale mobile social networks. To subsume this downside, we have a tendency to propose a community primarily based algorithmic rule and a distributed set-cover algorithmic rule. The performance of the planned algorithms is evaluated by in depth experiments on each artificial networks and a true trace. The results show that the community primarily based algorithmic rule has the simplest performance in both synthetic networks and there altrace compared to existing algorithms, and also the distributed set-cover algorithmic rule out performs the approximation algorithmic rule within the real trace in terms of diffusion time.

Key words: Data Diffusion, Mobile Social Networks, Community Structure

I. INTRODUCTION

Social network plays a very important role for spreading data, plan and influence among its members. Nowadays, social networks are evolving to on-line social networks like Facebook, Twitter, and Google+ that link humans, computers and also the net, and data spreading in social networks has been modified from the means of “word-of-mouth” to “word-of-text”, “word-of-voice”, “word-of-photo” and “word-of-video”. Additionally, with the proliferation of good mobile devices, like smartphone and pill, folks will simply go surfing with their mobile devices, meantime a lot of and a lot of native mobile social networks are created like Foursquare, Instagram, and Path. Moreover, Bluetooth and wireless local area network Direct extend communications between mobile devices from the restrictions of cellular infrastructure; user quality and social property bring various ad-hoc communication opportunities.

As the essence of infectious agent selling applications is data diffusion from allittle variety of people to the whole network by “word-of-mouth”, during this paper, we have a tendency to address the matter of distinguishing a little variety of people through whom the knowledge will be subtle to the whole network as presently as potential, spoken because the diffusion reduction downside. Diffusion reduction is of course vital to infectious agent selling applications. for instance, the “word-of-mouth” promotion caught to be disseminated to the network as presently as potential, and so it might be of interest to several firms further as people that need to extend complete awareness, or publicize advertisements or innovative concepts through “word-of-mouth”. for instance, a corporation would love to quickly raise the notice of a brand new product in a very network. the corporate at first offers free samples of the merchandise to a little variety of people within the network (the product is pricey or the corporate has restricted budge such they will solely select a little variety of people). The corporate hopes that the at first elite users can unfold the knowledge of the new product to their friends, and their friends can propagate the knowledge to their friends’ friends then on.

II. LITERATURE SURVEY

A. “Mining Social Networks Using Heat Diffusion Processes for Marketing Candidates Selection”— Zongqing Lu, Yonggang Wen, Weizhan Zhang, Qinghua Zheng, and Guohong Cao.[1]

In this article, at first we highlight the problem due to the complexity of social networks, few models exist to interpret social network marketing, social network marketing using Heat Diffusion Processes.

B. “SelfInterestDriven incentives for ad dissemination in autonomous mobile social networks.”– T. Ning, Z. Yang, H. Wu, and Z. Han.[2]

In this paper they discuss the to eliminate the needs of accurate knowledge about whom and how many credits ad provider should pay. SelfInterestDriven (SID) incentive scheme to stimulate cooperation among selfish nodes.


In this paper they discuss the difficult to evaluate since it requires a setting where many different kinds of information spread in a shared environment. They provide the solution for that is develop the simulation based and generative models to analyze.


In this paper they discuss the difficult to evaluate since it requires a setting where many different kinds of information spread in a shared environment. They provide the solution for that is develop the simulation based and generative models to analyze.
E. “To maximize the performance and Set-cover outperforms Approximation and Nave in terms of diffusion time”, Z. Lu, Y. Wen, and G. Cao[5]

They intend to improve community detection in weighted networks and exploit community for data forwarding in DTN and worm containment in OSN. Novel community detection algorithm, and then introduce two metrics called intracentrality and intercentrality, to characterize nodes in communities. Adaptive framework and novel approach for scalable community detection.

III. SYSTEM DESCRIPTION

The system contains the various modules:

A. Collection of Tweets

For this firstly collects tweets from Social Media API for extracting options.

B. Feature Extractor

Feature extractor is finished victimisation completely different guided pattern like declarative data guided pattern, social data guided pattern, distinction mining pattern.

C. Subset Generator

When this we are going to generate subsets of options and options are validate victimisation classification rule.

D. Classification

The category classification models square measure in the main wont to assign the category label among the obtainable class values to a brand new tuple. This can be done by victimisation classifier Model.

E. Knowledgebase

There’ll be predefined intents and that we are use content to avoid wasting that intent and validate options. thus information are hold on in knowledgebase.

F. Prediction Phase

Then in prediction part we are going to match the options and intents victimisation classifier model. The classifier model will be engineered by applying varied learning algorithms like multi-classification such i.e. Naive Bayesian classification, K-Nearest Neighbour(KNN). Finally feature and intent are match at classifier model. And potential intent of short-text are find.

IV. CONCLUSION

A problem of distinctive intent in user text posts or social information. We feature out a deep analysis of the structure and content of posts showing intent and gift a feature extraction technique that captures them effectively. We have a tendency to then train a classifier victimisation these options to classify every post into Intent. We have a tendency to believe that our work will give vital insights to applications that specialize in exploiting free-text intentions from social media.

REFERENCES