Predicting Movie Trailer Viewers “Likes/Dislikes”

A. B. Mali1 M. R. Bhondve2 S. S. Bhondve3 S. B. Phunde4

1,2,3,4Department of Computer Engineering
1,2,3,4SVPM’s COE Malegaon, 413115, Savitribai Phule, Pune University, Maharashtra, India

Abstract— Nowadays, several moving picture trailers area unit on the market on social media and severally indicate whether or not they like or dislike those video trailers. it's into new direction, Video Content analysis-the illustration and modeling of affectional video content[1], the most focus of this work is to extract the options. the supply of methodologies for extracting content wills extent the present scope of video. The effective content is color, shot and motion. Among several of the multimedia system options, single low-level multimedia system options of shot length variance area unit extremely prognosticative of a viewers like/dislike. The user might want to pick out a moving picture not solely supported its solid, director and story content. Feature extraction and machine learning approaches are often used wont to calculate the score range of like and dislike. Color options, motion options and shot options area unit extracted. Here we have a tendency to calculate the score exploitation shot writing variance pattern. This calculated score supports to predict the success of preview before launching. It helps to avoid the loss of administrators. A trailer needs to have interaction viewers for fewer than a pair of minutes and thirty seconds, that is that the most length allowed by the MPAA (Motion image Association of America). So, the trailer aims to inform the story of a movie in engaging fashion. It’s price to mention that in comparison these functions, the ratings of like/dislike correlate closely with the viewers written responses to the preview videos. For police investigation the changes in scene some fast scene analysis algorithms area unit used[2].

Key words: Bar Chart, Support Vector Machine, Key Frame, Shot Length, Feature Choice

I. INTRODUCTION

In period of time moving picture producers transfer moving picture trailers on the media and when uploading the video it get hits by the viewers. On the idea of that hits producers get idea concerning the success of trailers. In theses method most of the time videos get flops and producers needs to face loss of cash and waste of your time. To avoid these sort of drawback we have a tendency to attending to develop this project [2]. The motivation of this project is to predict the no of likes and dislikes for preview before uploading trailer. To avoid the loss of administrators we have a tendency to developing this technique to predict the no of likes and dislikes by extracting the low level video frames options. These options area unit color, motion and shot. It by exploitation this producers might grasp the deficiency of video and build improvement within the video to form it better[3].

The aim of this technique is to calculate preview “Like/Dislike” score. transfer the assorted moving picture trailer’s from YouTube or any social media network. Predict the trailers scores with range of likes and dislikes which might represent the viewers preferences. For calculative this score we have a tendency to use SVM(Support Vector Machine). The options area unit train with SVM. Then analyze the options of the trailers in detail [1]. For extraction there area unit sixteen options used. The Extracted Low level options area unit as follows:

- Shot Feature.
- Motion Feature.
- Color Feature.

II. SYSTEM FUNCTIONS

Project contain following completely different modules:

A. Data Collection

In this module we have a tendency to are grouping the youtube knowledge and reviews for that show. The score of each trailer is calculated by the “Like range (LN)” and “Dislike range (DN)” of the trailer videos. The LN and DN mean the vote range of individuals World Health Organization sort of a trailer video or dislike it. The liquid ecstasy and min score worth ar five.0 and 0. Meaning trailers can receive the next score if they'll incite the positive “like” of the audiences, while, those with lower scores could have a negative “dislike” result on the audience’s preference.

B. Extraction

In this section, the options extraction procedures are mentioned. The options, as well as color, motion and shots are evaluated. It ought to be noticed here that within the calculation procedures of color feature and motion feature, the trailer videos are separated into single frames.

C. Collection of features

During this module or technique we have a tendency to grouping the all extracted options. Here, they're thought to be the foremost powerful options to the audiences’ “like/dislike” rankings for the stratified show trailers. So, to investigate the options there’s an understandable relationship between feature and scores within the plot map of “Shot length variance-Score”.

D. SVM Module

During this module or technique we have a tendency to applying the classification formula and turn out the simplest feature or analysis of that advert.

Fig. 1: System Architecture
III. LITERATURE SURVEY

A. “Affective Understanding in Film”. Hee Lin Wang and Loong - Fah Cheong. June 2010

This helps to support in subtle flick analysis, ranking and assortment. Problem of bridging the Affective gap particularly in higher level emotional label square measure to be computed from low level causes.


During this we tend to conjointly advance a new genetic algorithmic rule with improved genetic operators(IO-GA) to optimize the SVM classifiers parameters.

This introduce native minima downside as a result of they are doing not absolutely contemplate the premature convergence of genetic algorithmic rule.

C. “SVM Modeling for extremely unbalanced Classification”. Yuchun Tang, Yan-Qing Zhang, Nitesh V. Chawla. 2012

Support price sensitive learning, oversampling, underneath sampling, data loss as a result of elimination of helpful samples, classification effectiveness is reduced.

D. “Prediction of films Box workplace Performance Using Social Media”. Krushikanth R. Apala, Merin Jose. 2013

This methodology helps to predict the success of films. great amount of information assortment is needed for analysis.

E. “Affective Video Content illustration and Modeling”. Alan Hanjallic, Li-Qun Xu. 2014

Highly useful for mechanically classifying video into totally different affection genres. Looking manually assortment of content verity tedious and time intense.

IV. CONCLUSION

In this project we tend to use the shot writing pattern for calculate frames options and use support vector machine (SVM) for coaching and testing. Here SVM is trained with some video and therefore the compare question video with trained video. On the idea of that comparison SVM predict score of likes and dislikes for the advert. this technique represent comparison of standard options of 2 or a lot of trailers. On the idea of that comparison system predict the score of likes and dislikes for the advert by exploitation SVM, this technique helps to induce prediction concerning the success of advert and to boost the video quality.

REFERENCES

[1] Yimin Hou1, Ting Xiao, Shu Zhang2, Xi Jiang2, Xiang Li2, Xintao Hu3, Junwei Han3, Lei Guo3, L Stephen Miller4, Richard Neuport5, and Tianming Liu2. “Predicting Movie Trailer Viewers Like/Dislike via Learned Shot Editing Patterns.” 10.1109/TAFFC.2015.2444371


[13] Yuchun Tang, Yan-Qing Zhang, Nitesh V. Chawla, and Sven Krasser.”SVMs Modeling for Highly Imbalanced Classification”. VOL. 1, NO. 11, NOVEMBER 2002