
IJSRD - International Journal for Scientific Research & Development| Vol. 3, Issue 06, 2015 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 1074

Design of Block Level Edge Detector using Spatial Filter
Nayina Ramapur

1
 Sujata Pujari

2
Dr.T C.Thanuja

3

1,2
M.Tech. Student (VLSI Design and Embedded Systems)

3
Professor

1,2,3
Department of Electronics & Communication Engineering

1,2,3
VTU, Belgaum

Abstract— The image processing plays a significant role in

many applications such as medical and defense applications.

Consequently, there is more demand for the research in

computer vision and image processing field. Canny Edge

detection algorithm is the standard for many years. But still

there are some limitations like more computation time and

the area utilization. As the existing algorithm requires the

storage for the overlapping block generated from the non-

overlapping block, the area utilization is more and also

accessing delay increases. Design of block level edge

detector using spatial mask filter is proposed to overcome

these effects. In this proposed design the edge detection is

applied at the block level. The creation of overlapping block

from the non- overlapping is performed with help of shifting

operation. Thus the area and delay can be reduced by

performing the shifting operation which generates the

overlapping blocks from the non-overlapping block without

any storage requirement.

Key words: Edge Detection, Edge Detection Algorithm,

Block Level, Reduced Area

I. INTRODUCTION

Edge detection is one of the significant sections of the image

processing algorithm, which has many applications like

image morphing, pattern recognition, image segmentation

and image extraction etc. As the edge is one of the major

information contributors to any image, hence the edge

detection is a very important step in many of the image

processing algorithms. It represents the contour of the image

which could be helpful to recognize the image as an object

with its detected edges. In the ideal case, by applying the

edge detector to an image gives the different edges that are

connected to form the outline of the object. Important

property of the edge detection is the detection of the exact

edges along with the good orientation of the object in the

image. And the memory required to store the edges of an

image is less compared to the whole image even though it

contains all information of the shape and orientation of the

object.

The definition of Edge is differing as the authors

varied. One of them is "It is change either in the brightness

or the color of an image ". It is found that edges are

basically denoted into four kinds in any image. They are

step edge, ramp edge, roof edge and line edge. Many edge

detection algorithms are proposed by many researchers and

they are mainly classified into two types based on the order

of derivative used [1]

 Gradient Based

 Laplacian Based

The Gradient based edge detection is also known as

the first order derivative based because the gradient is

calculated by differentiating an image. The Laplacian

method computes the second order derivative of an image

for the edge detection.

When the existing canny edge detector is applied to

the block levels of the image it may detect the false edges or

sometimes it may drop the true edges. In order to improve

the performance, the block level Edge Detection Using

Spatial Filter is applied to the block level. There are many

edge detection algorithms were proposed by different

authors [2].They are Prewitt, Sobel, Laplace, Canny, etc.

The Canny Edge Detection Algorithm is the most effective

algorithm among the existing edge detection algorithms. But

the computation time required is more.

To defeat this, the algorithm is implemented on the

different hardware devices like ASIC and FPGA. The

implementation on FPGA is better than ASIC. In [3] the

canny edge detection architecture and algorithm uses the

language called Handle-C for the modeling purpose and the

implementation of Canny Edge detection is made using

FPGA Virtex-3. To have the proper operation, the Nios-II

embedded processor is used for hardware implementation

and the DSP builder acts as the mediator between the Altera

Quartus II design software and MATLAB/Simulink tools

[4]. Although these are good edge detection algorithms but

there is a tradeoff between the performance and flexibility.

To improve the performance in terms of area and

processing rate, parallel design of a real-time Canny [5] is

introduced and it uses Spartan-3E for implementation. In the

Spartan-3E the area is consuming of 28% with a processing

rate of 240 frames per second for the image of 1Mpixel. For

Vertex-5 the area taken is 6% with a processing rate of 580

frames per second [5]. In order to overcome the time

consummation and manual setting of threshold [6] is

introduced and it has real time performance cyclone. As the

existing algorithm requires the storage of overlapping block

generated from the non-overlapping block, the area

utilization is more and also accessing delay increases. Thus

the area and delay can be reduced by performing the shifting

operation which generates the overlapping blocks from the

non-overlapping block without any storage requirement [7].

In [7] the filter mask used for smoothing is the

Gaussian mask and in the proposed design the spatial filter

mask is replaced with the Gaussian mask.

The paper is organized as follows. Section 2

describes methodology and implementation of the edge

detection algorithms. Also explains the proposed edge

detector using spatial filter at the block level is proposed.

Section 3 describes the obtained results and Section 4 finally

concludes the paper.

II. METHODOLOGY AND IMPLEMENTATION

For the Edge detection, image is given as input and the edge

map is obtained as output. The project uses the Verilog

coding for the design. But the Xilinx doesn‟t allow the

image data as input, as the Xilinx can work on any number

systems like decimal, hexadecimal, etc. So, the image has to

be first converted to the any of the number system then it

can be fed to the Xilinx as input. The conversion of image to

Design of Block Level Edge Detector using Spatial Filter

 (IJSRD/Vol. 3/Issue 06/2015/252)

 All rights reserved by www.ijsrd.com 1075

hexadecimal is done using the matlab. Image consists of a

number of pixels; each pixel value indicates the intensity at

that point.

The matlab can accept the gray images only for

processing purpose. Thus first the given input RGB (Red

Green Blue) image has to be converted to gray image and

then image is resized, a text file is created. The pixel values

are stored in that text files as equivalent hexadecimal

number, in a single column for easy processing. The main

idea behind the edge detection of an image is detecting the

change of intensity of the pixel in an image; it is between 0

to 255. The dark portion of the image is treated as „0‟ and

the bright portion is treated as „255‟. First the obtained pixel

values from the conversion of input image to the text is

given as input to the shifter which will divide the obtained

number of bits into 8-bit pixels and is fed to the horizontal

filter that computes both horizontal gradient(Gx) and vertical

gradients(Gy). Before the process of shifting first the

smoothing operation is employed this will be done as

follows:

In this design, the spatial filter mask m×n matrix of

size w with the m= 2x+1 and n= 2y+1 where x, y are non-

zero positive integers. For x=1 and y=1 the smallest possible

mask size is 3×3. The coordinate arrangement of the mask

coefficients is shown in the following figure fig. 1.

Fig. 1 Arrangement of Mask coefficients

Since mask used is of size 3×3 hence the image is

also selected in the block of 3×3. To satisfy the criterion of

the homogeneous pixel concept and to make differentiation

of the homogenous pixels boundary, the pixels have to be

classified first. In the proposed design first the color image

is converted to gray image and then the window is applied.

All the coefficients of the window are made as 1 except the

central pixel. The central pixel is made as ×. The

arrangement of window is shown in the following figure fig.

2.

Fig. 2 Arrangement of the window

After smoothing the image and eliminating the

noise, the next step is to find the edge strength by taking the

gradient of the image. The 2-D spatial gradient uses the

Sobel operator on an image to find the gradients in both the

directions. Then, the approximate absolute gradient

magnitude (edge strength) at each point can be found.

The obtained Gx and Gy are given input to the shift

registers which intern fed to the respective first in first out

buffers. The obtained pixels are indicating the gradients in

both directions and they are used to produce the Gradient

magnitude and direction of that pixel. Then they are stored

in the buffer and then the non-maximal suppression is made.

By using the Adaptive Thresholding the pixels are compared

to the different thresholds depending on the respective

blocks. Finally the hysteresis thresholding is employed

which will give the connectivity between the weak edges

and the strong edges depending on the continuity. Thus the

edge pixels are obtained. Then that are converted to the

image in the matlab using Text to image conversion code.

A. Block Diagram and Flow chart Of the Block Level Edge

Detector using Spatial Filter:

The Block Level Edge Detector Using Spatial Filter and its

flow chart are shown in fig. 3 and 4 respectively. In the

block diagram it is shown that first the 8 bit pixel of the

input image is given as input to the filter. This filter

computes the Gradient values of the each pixel in the x- &

y- directions (Gx &Gy). Then both are given to the shifters

which will generate the overlapping blocks then they are

passed through the FIFO (First In First Out). Then the

Gradient magnitude its direction (G & ɵG) are calculated.

Further the Non maximal suppression, adaptive thresholding

are employed to get the significant edges. Hysteresis is

applied to remove the false weak edges and consider the

weak edge connected to the strong edges.

Fig.3 Block diagram of Block level Edge Detector Using

Spatial Filter

The flow chart is shown in fig.4 which will provide

the flow of the proposed design.

As mentioned in the flow chart, the processing of

image in Xilinx platform is not possible directly, before

processing colored image is converted to gray image which

has the pixel value range between 0 and 255(2
8
-1). Then the

pixel values of gray image are made to store in a single

column in the text file. This text file is given as input to the

Xilinx after all the processes mentioned in the above flow

chart, the edge pixels are generated which has values like 0

for non-edge, 255 for strong edge and the in between values

indicate the weak edges. Depending on the connection to the

strong edge, the weak edge is either considered in the edge

map else it is dropped. The detailed explanation of each step

is described in the further part of the paper.

Design of Block Level Edge Detector using Spatial Filter

 (IJSRD/Vol. 3/Issue 06/2015/252)

 All rights reserved by www.ijsrd.com 1076

Fig. 4: Flow chart of the Block Level Edge Detector Using

Spatial Filter

B. Overlapping Block Creation:

The conversion of overlapping block from the non-

overlapping block is made [7] in as follows. In order to

include all significant edges first the image is divided into

n×n non overlapping blocks, and then they are extended in

all the four directions by (l+1)/2 if the gradient mask size is

lxl. The overlapping block is obtained from the non-

overlapping block is in order to not to miss any of the true

edges. An example of it is shown in fig. 5 with the Gradient

mask of 3X3 implies the extension in all the four directions

is (3+1)/2 =2.

Fig. 5: Obtaining m×m overlapping block from the n×n non-

overlapping Block with the Gradient mask 3×3

The overlapping block of the image obtained from

non-overlapping block is made previously using the memory

which increases the amount of memory required. Thus in

this proposed block level Edge Detection Using Spatial

Filter, the cache system is used with shift operation to get

overlapped block from the non-overlapped block. Here there

is no extra memory requirement as in the previous

algorithm. The obtained overlapping block is directly given

for the processing without storing it to any of the storage

element. Thus the latency is reduced and throughput is

increased. This shifting operation is made in window

transformation.

C. Horizontal and Vertical Gradient Computation:

The text file data is considered for the Gradient calculation

in both horizontal and vertical direction. To obtain the

gradients in both directions the text data has to be convolved

with the gradient operators in those directions. The gradient

operator used is Sobel operator, as it gives better gradient

values. The sobel operator is an isotropic 3×3 image

Gradient operator. It is an image intensity function for

gradient, which approximates the values of gradients.

The magnitude and direction of the gradients are

calculated as:

Magnitude(G)= √

 ; Direction(ɵG)= (

)

The direction is measured in terms of the degree.

And it is obtained by dividing Gy by Gx then applying the

inverse of tangent operation to that.

ɵG = invtan(Gy/Gx).

D. Non Maximal Suppression:

In this step the non-local maximals are eliminated. To

eliminate, first the neighboring pixel values has to be

compared with the pixel under consideration. Once the

direction (ɵG) of the edges are known the next step is to link

to the direction of the image. This can be done in this step.

So if the pixels of a 5x5 image are aligned as in fig. 6.

Fig. 6 Alignment of example of a 5×5 image

Just by observing the above figure that indicates

the alignment of the image, the possibilities of the directions

to the “a” is any of the four directions. They are:

 0 degrees (in the horizontal direction)

 45 degrees (along the positive diagonal)

 90 degrees (in the vertical direction)

 135 degrees (along the negative diagonal)

Approximation is made depending on the nearer

direction, the edge direction is decided. The approximation

is made such that if the obtained direction is 3° then it can

be approximated to the 0°. In the similar way the

approximation of the direction is made as in the following

semicircle. The semicircle indicates the different colors of

five sections which indicate the range of degrees to be

approximated.

Fig. 7 Sections of approximating the degree of direction

Fig. 8 Non Maximal Suppression mechanism

Design of Block Level Edge Detector using Spatial Filter

 (IJSRD/Vol. 3/Issue 06/2015/252)

 All rights reserved by www.ijsrd.com 1077

From the above figure the each color indicates a

range of degrees are approximated to a single direction. That

is the purple color specifies the range of 0 to 22.5 & 157.5 to

180 degrees is set to 0 degrees. Any edge direction coming

in the red range 22.5 to 67.5 degrees is set to 45 degrees.

Any edge direction specified in the blue range of 67.5 to

112.5 degrees is set to 90 degrees. And lastly, any edge

direction falling within the gray range of 112.5 to 157.5

degrees is set to 135 degrees. All this approximation is done

in the non-maximal suppression block. After the edge

directions are known, non-maximum suppression now has to

be applied. Non-maximum suppression and threshold is

used to trace along the edge in the edge direction and

suppress any pixel value (sets it equal to 0) that is not

considered to be an edge. This will give a thin line in the

output image.

The observation of neighboring pixel is made in the

0°, 45° and 135° are considered as shown in fig. 10; the

black box represents the pixel under consideration. The

neighboring pixels are compared in the all three directions

mentioned before. Thus by comparing if the considered

pixel is having higher value than its neighbors then it is

treated as local maxima and is considered for edge map else

it is eliminated from the edge map.

E. Adaptive Thresholding Computation

In this step the image is divided into blocks as smooth,

textured, hybrid and strong edge blocks based on the No. of

Uniform pixels (Nu) and No. of Edge pixels (Ne). The

process based on the following steps [8]:

1) If Nu >=0.3*(Total_Pixel) and Ne =0

Smooth Block

2) If Nu<0.3*(Total_Pixel) and Ne=0

Texture

3) If Nu<0.65(Total_Pixel-Ne) and Ne>0

&Ne<(0.3*Total_Pixel)

Edge/Texture

4) If Nu>=0.65(Total_Pixel-Ne) and

Ne>0&Ne<0.3*Total_Pixel)

Medium Edge

5) If Nu<=0.7*(Total_Pixel) and

Ne>=0.3*(Total_Pixel)

Strong Edge

Where the Nu indicates the number of uniform

pixels and Ne represents the total number of edge pixels in

the block. Depending on the values of the Nu and Ne the

pixels are indicated to which block it belongs. In this design

an adaptive thresholding block is used which will provide

different threshold for different blocks.

Considering P1 as the percentage of pixels in a

block

1) Step1:If Smooth Block

 P1=0; i.e No Edges

 else if Texture Block

 P1=0.03; i.e Few Edges

 else if Medium Edge Block

 P1=0.2; i.e Medium Edges

 else

 P1=0.4; i.e Many Edges

2) Step2:Calculating the 8-bin non uniform gradient

magnitude histogram and corresponding function is

F(G)

1) Step3:Calculate High_threshold as

F(High_threshold)=(1-P1)

2) Step4:Calculating Low_threshold

=0.4*High_threshold

As mentioned in the above steps, the blocks are

classified, and the blocks will represent unique status of the

edges. If the block is smooth then there were no edges and

the threshold is set to zero.

F. Hysteresis Thresholding:

Finally to remove the streaking effect, hysteresis

thresholding is employed. The streaking effect is arises due

to the shifting of the output of the operator above and below

the threshold. This method is used to have the continuity of

the contour of the image. The discontinuity in the outline of

the image is caused due to the varying values of the pixels

around the threshold value. If only one threshold, T1 is

applied to an image, and if an edge has an average strength

that is same as T1, then due to noise, there will be cases

where the edge drops below the threshold or the edge may

be extended above the threshold.

To avoid this effect two thresholds high (T1) and

low (T2) are employed in the hysteresis. If the edge is

higher than the high threshold (T1) treated as the strong

edge. If edge is lower than the low threshold (T2) then it is

defined as non-edge. And if the edge value is in between the

T1 and T2 threshold then that will be treated as weak edge.

The process is continued as the edge pixel value is greater

than the T2 and it will continue until the all pixels having

the value less than the T1. Depending on the relation

between the weak edge and the neighboring edges, either the

weak edge is considered in the edge map else it will be

treated as non-edge and eliminated from the edge map. This

block will connect the weak edges with the strong edge.

There are many weak edges were detected but all the weak

edges are not true edges. The decision of considering the

weak edge in the edge map only if that weak edge is

connected to strong edge, else the weak edge is dropped

from the edge map.

III. SIMULATION RESULTS

The performance of the Block level edge detector using

spatial filter algorithm is evaluated by simulating a different

resolution of image such as 128×128, 256×256 using Matlab

and Xilinx.

The thresholding is based on the type of the block.

For example, if the considered image block has strong edge,

then the threshold is set as 102. If the considered pixel is

greater than this threshold, it is treated as strong edge and

made as 255 else it will be treated as weak edge. Similarly

for the blocks having medium edges and few edges the

threshold will be set as 7.65 and 25 respectively. The above

explained procedure is repeated to make the decision of

edge or non-edge of the considered pixel. Since the smooth

block does not have edges the threshold will be set either 2.5

or 0.

Subjective Performance evaluation of the algorithm

is considered. Image is Read through the matlab and the

color image is converted to binary and then to text. Fig 9 (a)

shows the output of color image of size 128×128. Fig. 9(b)

shows the gray converted image and Fig. 9(c) shows the text

Design of Block Level Edge Detector using Spatial Filter

 (IJSRD/Vol. 3/Issue 06/2015/252)

 All rights reserved by www.ijsrd.com 1078

file generated corresponding to the input image. Text file is

read through the Xilinx software.

Fig. 9: Matlab input image & output text result

The Simulation results of the edge detector are

shown in the fig. 10. In that the input pixel data is shown

which contains the various pixel intensity of the image. The

pixel intensity value is shown the binary form that varies

from 0 to 255.That is in the binary 00000000 to 11111111.

The clock and synchronization frequency is applied. The

edge detected output is having the values in the same range

but the non-edges are indicated with the all zero that is

“00000000”. The strong edges are indicated with all ones

that is “11111111”.

Fig. 10: Simulation of Edge detector

After getting the simulation results the generated

text file is stored in the output text file mentioned in the test

bench. Then to get edge mapped output the matlab code that

converts text to image is used.

The edge detected image obtained in the matlab is

shown in fig. 11

Fig. 11: Output Obtained in Matlab

For different images namely bird and flower of size

128×128, the canny edge detection and block level detection

using spatial filter is applied. The images of the edge

detection output are shown in the figures 12 and 13.

(a) (b)

(c) (d)

Fig. 12 Bird (a) Color image (b) Gray image (c) Canny

Edge detected output (d) Block level Edge detected image

Using Spatial Filter

(a) (b)

(c) (d)

Fig. 13 Flower (a) Color image (b) Gray image (c) Canny

Edge detected output (d) Block level Edge Detected image

using spatial filter

The images considered for simulation to evaluate

the performance are chosen based on the variation in the

number of edges. Fig. 14, 15 & 16 shows the images with

the more, medium and less edges of resolution 256×256.

Design of Block Level Edge Detector using Spatial Filter

 (IJSRD/Vol. 3/Issue 06/2015/252)

 All rights reserved by www.ijsrd.com 1079

Each figure contains the input image and the corresponding

edge detected image.

Fig. 14 Input image and block level edge detected using

spatial filter image of picture

Fig. 15 Input image and block level edge detected using

spatial filter image of lena

Fig. 16 Input image, gray image and block level edge

detected using spatial filter image of spring flower

The Table 1 shows the number of slices utilized out

of available for the Canny Edge Detector and the Block

level Edge detector Using Spatial Filter.

Canny Edge

Detector[4]

Proposed Block Level

Edge Detector Using

Spatial filter

Total Number of

Slices Available
27,288 27,288

Number of

Slices Utilized
4560 3123

Delay 4.9652ns 4.7097ns

Table 1 Area Occupation and Operating Frequency

comparison On Spartan-6 FPGA

From the above table the area utilization of the

Canny Edge detector and Proposed Block Level Edge

Detector Using Spatial Filter is mentioned in terms of

number of Slice used. It is observed that the proposed design

uses less area compared to the canny edge detector. That is

the area is reduced by 31.51%. The frequency of operation

is also more than the previous implementation, thus the

speed is increased compared to the canny edge detector.

And also the delay is reduced by 0.2ns.

IV. CONCLUSION

The paper describes the Canny Edge Detection Algorithm

that used to detect the edge of any image as a complete

image without dividing it into blocks. The proposed Block

level Edge detector using spatial filter has overcome the

limitation of existing edge detection algorithms by reducing

the delay and area. The design of Block Level Edge

Detector Using Spatial Filter is coded in Verilog HDL

language. The simulation and synthesis of the design is

carried out using Xilinx ISE 14.5 tool. The delay and area of

the proposed design is reduced by 31.51%. The delay is

reduced by 0.2ns.

In the future for the different image processing

applications the proposed method can be used to improve

the performance.

REFERENCES

[1] James Clerk Maxwell, 1868 Digital Image Processing

Mathematical and Computational Methods.

[2] Raman Maini, Dr. Himanshu Aggarwal “Study and

Comparison of Various Image Edge Detection

Techniques”, International Journal of Image Processing

(IJIP), Volume (3)

[3] D. V. Rao and M. Venkatesan, “An efficient

reconfigurable architecture and implementation of edge

detection algorithm using handle-C,” in Proc. IEEE

Conf. ITCC, vol. 2. Apr. 2004, pp. 843–847.

[4] H. Neoh and A. Hazanchuck, “Adaptive edge detection

for real-time video processing using FPGAs,” Altera

Corp., San Jose, CA, USA, Application Note, 2005.

[5] C. Gentsos, C. Sotiropoulou, S. Nikolaidis, and N.

Vassiliadis, “Real time canny edge detection parallel

implementation for FPGAs,” in Proc. IEEE ICECS,

Dec. 2010, pp. 499–502.

[6] W. He and K. Yuan, “An improved canny edge detector

and its realization on FPGA,” in Proc. IEEE 7th

WCICA, Jun. 2008, pp. 6561–6564.

[7] Q. Xu, C. Chakrabarti, and L. J. Karam, “A distributed

Canny edge detector and its implementation on FPGA,”

in Proc. DSP/SPE), Jan. 2011, pp. 500–505.

[8] W. He and K. Yuan, “An improved canny edge detector

and its realization on FPGA,” in Proc. IEEE 7th

WCICA, Jun. 2008, pp. 6561–6564.

