Comparison between (1cross2) and (1cross4) Micro strip Patch Antenna Array of Triangular Patch
Sanjeev Singh Ratnakar 1 D.C.Dhubkarya 2
1,2Department of Electrical Engineering
Bundelkhand Institute of Engineering & Technology Jhansi U.P. India

Abstract—This paper describes comparison between (1cross2) and (1cross4) microstrip patch antenna array of triangular patch. (1cross2) Antenna array achieves high gain 5.8dBi at frequency 2.68 GHz , while that (1cross4) Antenna array achieves high gain 8.8dBi at frequency 2.68 Ghz. This antenna utilized dielectric substrate which has dielectric constant 4.4 and thickness 1.6mm. (1cross2) antenna show percentages bandwidth 8.4 and it offer gain 5.8dB, while that (1cross4) antenna show percentages bandwidth 6.8 and it offer gain 8.8dB, directivity 11.5dB, and antenna efficiency 58% at resonant frequency 2.68 GHz. So this micro strip patches antenna arrays of triangular patch for Wi-MAX.

Keywords: Micro strip Patch Antenna, Antenna array, WiMAX

I. INTRODUCTION

In the field of wireless communication micro strip patch Antenna plays a vital role. Micro strip patch antenna show various advantages for low profile communication system like low cost, low weight, flexibility and ease of integration with active devices. For monolithic microwave integrated circuit micro strip patch antenna show a good solution.

Micro strip patch antenna show some limitation like low bandwidth, low gain and it cannot process multiband so for overcome this limitation many type of miniaturization technique ,like utilizing high dielectric substrate , applying reactive and resistive load and increasing the electrical length of antenna have been proposed and utilized[1] .

Microstrip patch antenna array is a good solution to obtain high gain result. Microstrip patch antenna increases its overall geometrical size as comparison microstrip patch antenna. Gain is increased while that bandwidth is decresed of microstrip patch antenna array. Microstrip patch antenna array structure has various disadvantages like large size[2].

In the present work, Microstrip patch antenna array is taken of triangular patch for high gain by collection of triangular patch and different feeding [3]. The substrate material play very important role in deciding the size and bandwidth of antenna [4]. For given antenna glass epoxy substrate utilized which has the dielectric constant 4.4 and the thickness of dielectric is 1.6mm. [5]

II. ANTENNA DESIGN CONSIDERATION

Table 1 shown all specification for designing of microstrip patch antenna array.

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Design resonance frequency</td>
<td>2.68GHz</td>
</tr>
<tr>
<td>2.</td>
<td>Dielectric constant</td>
<td>4.4</td>
</tr>
<tr>
<td>3.</td>
<td>Substrate height</td>
<td>1.6mm</td>
</tr>
<tr>
<td>4.</td>
<td>Patch length</td>
<td>25mm</td>
</tr>
</tbody>
</table>

Fig. 1: (1 cross 2) array Feeding point = (14.5, 6) in mm

B. Bandwidth Vs Frequency:

Fig. 2: Bandwidth Vs frequency

C. Gain vs. Frequency:

Fig. 3: Gain vs. Frequency
D. (1 Cross 4) Array:

Fig. 4: Geometry of Microstrip Patch Antenna Array
- A=12mm
- B=2mm
- L=68mm
- M=4mm
- P=8mm
- N=4mm
- T=25mm
- Feeding point = (117.5,-12) in mm.

Fig. 5: Gain vs. Frequency

Fig. 6: Bandwidth Vs frequency

Fig. 7: Efficiency vs. Frequency

Fig. 8: Gain vs. Frequency

Fig. 9: VSWR Vs frequency

Fig. 10: Directivity vs. Frequency

III. SIMULATION RESULT AND DISCUSSION

Microstrip patch antenna array of triangular patch for Wi-MAX application simulated and analyzed by using IE3D software version 9.0 which is resonated at frequency 2.68 GHz. The gain of (1 cross2) microstrip patch antenna array is 5.8dbi while that the gain of(1 cross 4) microstrip patch antenna array is 8.8dbi and the antenna efficiency of microstrip patch antenna array is found to be 58%. The microstrip patch antenna array offer bandwidth is 6.8% and directivity 11.5 dbi. VSWR of microstrip patch antenna array is in between 1 and 2 over entire frequency band.
Table 2: Simulation Result

<table>
<thead>
<tr>
<th>ARRAY</th>
<th>RESONANCE FREQUENCY (GHz)</th>
<th>RETURN LOSS (db)</th>
<th>BANDWIDTH</th>
<th>GAIN (dbi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*2</td>
<td>2.68</td>
<td>19.6</td>
<td>8.4%</td>
<td>5.8</td>
</tr>
<tr>
<td>1*4</td>
<td>2.68</td>
<td>21.4</td>
<td>6.8%</td>
<td>8.8</td>
</tr>
</tbody>
</table>

IV. CONCLUSION

The characteristic of microstrip patch antenna array of triangular patch studied through by IE3D simulation software. It is found that gain can be increased by using array of triangular patch. (1 cross 2) microstrip patch antenna array has gain 5.8 dbi at 2.68 GHz and (1 cross 4) microstrip patch antenna array has high gain 8.8 dbi at 2.68 GHz frequency and antenna cover the frequency range of 2.58 GHz to 2.75 GHz which is suitable for WiMAX application [5]. It is found that microstrip patch antenna array provides high gain.

REFERENCES

