Sentimental Analysis to Rank Web Products
Mr. Abhijit J. Borade1 Mr. Imran R. Momin2 Mr. Dattatray B. Ghogare3 Prof. S. Pratap Singh4

1,2,3,4Department of Computer Engineering
1 Institute of Knowledge College of Engineering, Pune

Abstract— Nowadays, there is a trend of online shopping as more and more products are being sold by the manufacturers on the internet and customers are expressing their views and reviews about a product on the internet. Traditionally, individuals collect feedback from their friends or relatives before purchasing an item, but nowadays user generated reviews give the information which helps customers in buying their favorable products. So reviews of huge number of individuals around the globe can be analyzed. For that, various review mining techniques and sentiment analysis techniques are currently being used and products are being ranked using various ranking algorithms. We present a product ranking system using review mining techniques. Users can specify product information and get the ranking results of all matched products in return. We consider three issues while calculating product scores: Product reviews, Product popularity and Product release month. We are going to rank the products specified by user not all the products.

Key words: Natural Language Processing, Review Mining, Sentiment Analysis, POS Tagging, Wordnet

I. INTRODUCTION

With the exponential growth of the web there has been explosive increase in the user generated contents in the form of customer reviews, their blogs, discussions, social networks etc. The contents are stored as unstructured or semi-structured data from where distillation of knowledge is a challenging task. Till now, most of the ranking systems are doing reviews and sentiments analysis to decide whether it is positive, negative or neutral [1], [2], [3]. But this is not sufficient to rank. To rank the products we should have some numeric score for each product.

Here we propose a feature wise review mining system which first extracts features from user reviews, then finds the intensity by giving emphasis to the modifier of the words expressing reviews. It finds out numeric score of all the features and sentiments then calculates the overall orientation of the feature to determine how intense the review is for positive and negative features. Identify positive and negative features by extracting the associated modifiers and reviews. Specify the features in descending order of importance to present the summery.

We consider three issues while calculating product scores: 1) Product reviews, 2) Product popularity and 3) Product release month. We are going to rank the products specified by user not all the products. Users will specify product information and get the ranking results of all matched products in return.

Organization of the paper is as following. In the next section i.e. Section II; we review basic concepts and algorithms used in this paper in brief. Then, the framework of a product ranking system is proposed in Section III. Section IV contains the implementation screen samples.

II. BASIC CONCEPTS AND ALGORITHMS

Here in this section we are going to review the basic concepts briefly.

A. POS Tagging:
The POS tagging generally referred to as Part-of-speech tagging [1] (i.e. POST), is also called as word category disambiguation or grammatical tagging, and it is basically the process of giving the correct part of speeches which can be verb, adverb, adjective, noun, pronoun, etc. to each word in a data that is textual and which is based on both of its context and dentition as follows:

<table>
<thead>
<tr>
<th>Word</th>
<th>POST</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>This</td>
<td>DT</td>
<td>Determiner</td>
</tr>
<tr>
<td>Article</td>
<td>NN</td>
<td>Noun, Common, Singular or Mass</td>
</tr>
<tr>
<td>Is</td>
<td>VBZ</td>
<td>Verb, Present Tense, 3rd Person Singular</td>
</tr>
<tr>
<td>About</td>
<td>RB</td>
<td>Adverb</td>
</tr>
<tr>
<td>The</td>
<td>DT</td>
<td>Determiner</td>
</tr>
<tr>
<td>Sport</td>
<td>NN</td>
<td>Noun, Common, Singular or Mass</td>
</tr>
<tr>
<td>.</td>
<td>SENT</td>
<td>Sentences</td>
</tr>
</tbody>
</table>

Table 1: Part of Speech Tagging

B. WordNet:
WordNet [13], [14] is basically a database which is lexical for the English language [4]. It collects words in English sentences and groups them into collection of synonyms which is basically called as synsets, and gives us general and short concepts and definitions, and records the different relations which are semantic between these synsets.

C. Stopword Removal Algorithm [17]:

Algorithm Stopwords Removal (wordsList[], stopWordsofwordnet[])

{ Define Stopwords set i.e. Stopwords word net.
 for i := 0 to wordsList size do
 { if (BinarySearch (wordsList[i],
 stopWordsofwordnet) ≠ -1) then
 Remove wordsList[i] from wordsList
 }
}

Fig. 1: Stopword Removal Algorithm

Each word in the input is scanned. For each word encountered searching is done to check whether the word is in the WordNet stopwords’ list or not. If it is there then remove it. A sample set L of stopwords is given bellow.

L = { am, is, are, the, a, an, have, has, had, do, does, did }

D. Stemming Algorithm:
A stemmer for English, for example, should identify the string "cats" (and possibly "catlike", "catty" etc.) as based on the root "cat", and "stemmer", "stemming", "stemmed" as based on "stem". A stemming algorithm reduces the words...
"fishing", "fished", and "fisher" to the word, "fish". Another words, "argue", "argued", "argues" and "arguing" reduce to the stem "argue" (illustrating the case where the stem is not itself a word or root) but "argument" and "arguments" reduce to the stem "argument". [15]

Example: Let us consider the sentence given bellow.

"Product worked absolutely fine."

Here it will encounter two words with some suffix. Now these suffix parts are removed to form a word without suffix.

*Worked, absolutely

↓

*Work, absolute

E. TF-IDF:

TF-IDF stands for Term Frequency-Inverse Document Frequency, and its weight is a weight used for retrieving information and text mining. It is a statistical measure which is used to evaluate how much important a word is to a document in a collection. The importance increases as the number of times a word appears in the document but is offset by the frequency of the word in the collection. Variations of the TF-IDF weighting scheme are often used by search engines as a central tool in scoring and ranking a document's relevance given a user query.

How to Compute? Typically, the TF-IDF weight is composed by two terms: the first computes the normalized Term Frequency (TF). We are not going to use TF. The second term which we are going to use is the Inverse Document Frequency (IDF), computed as the logarithm of the number of the documents in the corpus divided by the number of documents where the specific term appears.

IDF: Inverse Document Frequency, which measures how important the term is. When computing Term Frequency, all terms are considered as they are equally important. However it is known that certain terms, such as "is", "of", and "that", may appear a lot of times but have little importance. So we will weigh down the frequent terms while scale up the rare terms, by computing the following [1]:

\[
IDF(t) = \log \left(\frac{\text{Total No. of Documents}}{\text{No. of Documents with Term } t \text{ in it}} \right)
\]

Example: Consider a document containing 100 words wherein the word cat appears 4 times. The term frequency (i.e., TF) for cat is then \(4 / 100 = 0.04\). Now, assume we have some million of documents and the word cat appears in one thousand of these. Then, the inverse document frequency (i.e., IDF) is calculated as \(\ln(10,000,000 / 1,000) = 4\). Thus, the TF-IDF weight is the product of these quantities: \(0.04 * 4 = 0.16\). [16]

III. SYSTEM FRAMEWORK

In general, ranking is provided for different types of products (e.g. computers, mobiles), based on the analysis of collected user reviews. Therefore, our system is designed to provide relevant product ranking for different products. First, through the Internet, downloaded HTML page data from Amazon product review pages is to be given to the system.

Then, it would extract the required product reviews and information from downloaded data, and split them into sentences. Next, it identifies the polarity of the review words in each sentence. Finally, the product information and review polarity would be integrated. Afterwards, product scores are generated and ranking results are obtained.

![Fig. 2: System Framework](image)

A. Download Product Web Pages:

When user searches for product we download all matched products’ web pages. These pages contain information and reviews of each product. For example a user searches for Nokia Lumia phones. The search results will contain Nokia Lumia mobile phones of various models, prices, colors, etc. Web pages for all these mobile phones will be downloaded.

B. Reviews and Information Extraction:

This is to identify relevant portion of the web documents. We use Markup Language (ML) tag filter which divides the individual documents in individual record size chunks and presents them as individual unstructured record documents for further processing. The cleaned document is then converted into numeric-vectors using unigram model for the purpose of subjectivity/objectivity analysis. In document vectors a value represents the likelihood of each word being in a subjective or objective sentence [3].

Subjective sentences are expressive of the reviewer's sentiments about the product and objective sentences do not have any direct or obvious bearing on or support of that sentiment. Therefore, the idea of subjectivity analysis is used to retain segments (sentences) of a review that are more subjective in nature and filter out those that are more objective.

In this way we will extract name, brand, release date, price, number of reviews, reviews, etc. Now for each review we will find out how many people found that review helpful, rating, review post date, etc.

C. Splitting Review Text into Sentences:

We parse a product's reviews to split texts into sentences, and produce POS tags like noun, verb, adverb, adjective, etc. for each word [1].

D. Identify Sentence Polarity (Pos./Neg.):

Polarity of a sentence can be calculated by using review strength \((OS_p)\), IDF, and degree of adverbs \((Degree_p)\) that can modify polarity [1].

Sentence Score

\[
Sentence_p = OS_p \times IDF_p \times Degree_p
\]

1) **Review Strength:**

\[
OS_p = \text{Sign} \left(\frac{SET(p)}{|CS(p)|} \right) \frac{|CS(p)|}{|SET(p)|}
\]
Where SET(p) is a positive or negative set based on the polarity of adjective p. CS(p) is a closed set which is extended by p using synonyms and OSP is the review strength of adjective p which is between -1 and 1. If we take an adjective “good” as an example, its polarity is positive. The positive set consists of 4308 elements; CS(good) is extended by “good” and has 3879 elements. Then, OSP(good) can be calculated as 3879 / 4308 = 0.900418.

2) Inverse Document Frequency:
The formulae given above in section II (E) will calculate the IDF value but here we are identifying polarity. So we need to normalize IDF such a way that it will give us a value either 0 or 1.

$$IDF_p = \ln \left(\frac{R}{RCA_p} \right) \times \gamma, \quad \gamma = \frac{1}{\ln(R)}$$

Where RCAp denotes the number of product reviews containing adjective p, R is the number of all product reviews, and γ is a normalization formula making IDF_p value in the range of [0, 1].

3) Degree of Adverbs:
Adverb can modify adjective (Adverb + Adjective) and enhance or weaken the adjective strength or even change the polarity (not + Adjective). The Degreep denotes the degree of an adverb modifying an adjective p. Four levels of adverbs are shown in Table 2. When the weight of high (0.6), medium (0.5), low (0.4) and negative levels (-1); if no adverb is used to modify an adjective, the weight would be 0.5. [1]

The polarity is saved into the database along with the extracted information.

<table>
<thead>
<tr>
<th>High (0.6)</th>
<th>Medium (0.5)</th>
<th>Low (0.4)</th>
<th>Negative (-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>very, incredibly, much, so, too, completely, etc.</td>
<td>fairly, pretty, rather, as, almost, partly, half, etc.</td>
<td>slightly a little, a bit, somewhat, etc.</td>
<td>Not</td>
</tr>
</tbody>
</table>

Table 2: Degree of Adverbs

E. Calculate Final Score:
To calculate the score we need Average Polarity of Reviews (APR), Popularity Weight (PW) and Weight of Product Release Month (WPRM).

$$Score_i = APR_i \times PW_i \times WPRM_i$$

1) Average Polarity of Reviews APR could be calculated as follows.

$$APR_i = \frac{\sum_{j=1}^{n} (Polarity_j \times HF_j) \times WRPD_j}{n}$$

Where n is the number of reviews, polarity is the polarity of review, HF is a value between -0.99 and 0.99, WRPD is the weight of review post date.

2) Polarity of a Review Is Calculated As:

$$Polarity_j = \frac{\sum_{p=1}^{k} Sentence_p}{k}$$

2) Helpful (HF) Can Be Calculated As:

$$HF_j = \alpha \times \left[\ln \left(\frac{Help_j - NotHelp_j}{2} \right) + 2 \right] / 10$$

Where RPDj is the post date of review j, t is the current date, and β normalizes WRPD value in the range (0.36, 0.99). [1]

2) Popularity Weight:
Popularity Weight is how much a product is popular. A product with more discussion is more popular.

$$PW_i = \ln \left(\frac{m_i + 1}{\ln(\max(m) + 1)} \right)$$

Where the number of reviews for product i are m_i, and $\max(m)$ is the maximum number of reviews among all products.

3) Weight of Product Release Month
WPRM is calculated in the similar way we calculated WRPD which is calculated as following:

$$WPRM_i = \exp \left(\frac{PRM_j - t}{12 \times \beta} \right), \quad \beta = \frac{t - \min(PRM_j)}{12}$$

Where PRMi is release month of product i, t is the current month, and β normalizes WPRM value.

IV. SOME IMPLEMENTATION SCREEN SAMPLES
After a successful file upload the file is parsed to get the review section and other product features such as its name, the date when it was released, how many reviews it has, etc. In the screen sample 1 below the reviews are shown there in the iframe with its score, the average polarity and opinion strength. All extracted reviews are displayed in the iframe. You need to scroll down to the bottom to see the score. The file upload can be done by admin only. Normal user do not have that option.

Fig. 3: Screen Sample 1
The screen sample 2 below shows the actual ranking page. User has to select a product category to get ranking of that category.
Sentimental Analysis to Rank Web Products
(IJSRD/Vol. 3/Issue 02/2015/247)

Fig. 4: Screen Sample 2

V. ACKNOWLEDGMENT

We thank Dr. Damodar J. Garkal (Principal IOKCOE Pune) for providing necessary facilities to carry out the work. We are very thankful to Prof. S. Pratap Singh (Assistant Professor and Dean of Student Welfare IOKCOE Pune) and our Head of the Department Prof. Ritesh Thakur for their useful guidance.

REFERENCES

[1] Yin-Fu Huang, Heng Lin, “Web Product Ranking Using Opinion Mining”, IEEE 2013 Symposium on Computational Intelligence and Data Mining (CIDM), Pages 184-190
[16] TF-IDF: (en.wikipedia.org/wiki/Tf-idf/)