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Abstract— the real power transfers by maintaining voltage 

stability and system reliability. It is a critical element for a 

transmission operator to ensure the reliability of an electric 

system while minimizing the cost associated with it. 

Optimum scheduling of reactive power reduces the active 

power losses in the transmission system.This paper presents 

a Particle Swarm Optimization algorithm for Reactive 

Power Optimization problem. In this paper, reactive power 

optimization function is taken to minimize the real power 

losses. This paper covers the reactive power optimization 

problems, different optimization techniques, the basic 

concept of Particle Swarm Optimization and its algorithm 

for this problem and results obtained for 6-bus test system 

and IEEE 30-bus test system for PSO and Newton method.     
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I. INTRODUCTION 

During the steady state operation of an AC power system 

the active power production must match the consumption 

plus the losses, otherwise the frequency will change. There 

is an equally strong relationship between the reactive power 

balance of a power system and the voltages. In itself, a 

reactive power balance will always inherently be present, 

but with an unacceptable voltages if the balance is not 

appropriate. An excess of reactive power in an area means 

high voltages and a deficit means low voltages. The reactive 

power balance of a power system also influences the active 

losses of the network, the heating of components and in 

some cases, the power system stability. 

Reactive power optimization is a sub-problem of 

the optimal power-flow (OPF) calculation, which 

determines all kinds of controllable variables, such as 

reactive power outputs of generators, tap ratios of 

transformers, outputs of shunt capacitors/reactors, etc., and 

minimizes transmission losses or other appropriate objective 

functions, while satisfying a given set of physical and 

operating constraints. 

II. REACTIVE POWER OPTIMIZATION 

A definition of optimization is given by, “A broad set of 

interrelated decisions on obtaining, operating and 

maintaining physical and human resources for electricity 

generation, transmission, and distribution that minimize the 

total cost of providing electric power to all classes of 

consumers.” 

Optimization is the process of adjusting the inputs 

to or characteristics of a device, mathematical process or 

experiment to find the minimum or maximum output or 

result. 

The objectives of reactive power (VAR) 

optimization are to improve the voltage profile, to minimize 

system active power losses and to determine optimal VAR 

compensation placement under various operating conditions. 

To achieve these objectives, power system operators utilize 

control options such as adjusting generator excitation, 

transformer tap changing, shunt capacitors and SVC. 

III. OPTIMIZATION TECHNIQUES 

The optimization techniques can be classified mainly in to 

two categories: Deterministic methods and Heuristic 

methods. They can be further classified in to following 

categories: 

1) Deterministic Methods: 

 Gradient Methods 

 Newton's Method 

 Simplex Method 

 Sequential Linear Programming 

 Sequential Quadratic Programming 

 Interior Point Methods 

2) Heuristic Methods: 

 Ant Colony Optimization 

 Artificial Neural Network 

 Evolutionary Algorithms 

 Particle Swarm Optimization 

 Simulated Annealing 

 Tabu Search 

A. Deterministic Methods: 

Quadratic Programming (QP) is a special form of nonlinear 

programming whose objective function is quadratic and 

constraints are linear. In Newton-Raphson (N-R) Method, 

the Jacobian matrix and the B-coefficients have been 

developed in terms of the generalized generation shift 

distribution factor. So the penalty factor and the incremental 

losses are easily obtained. Execution time is lesser than that 

of the conventional one. The Interior Point (IP) method 

finds improved search directions strictly in the interior of the 

feasible space. 

B. Heuristic Methods: 

Artificial Neural Network (ANN) is an interconnected group 

of artificial neurons that uses a mathematical model or 

computational model for information processing based on a 

connectionist approach to computation. Fuzzy Logic (FL) 

method is derived from fuzzy set theory dealing with 

reasoning that is approximate rather than exactly assumed 

from classical predicate logic. Genetic Algorithm (GA) 

method belongs to the category of random search algorithms 

which simulate the evolution process based on the theory of 

survival of the fittest. Ant Colony Optimization (ACO) is 

based on the idea of ant searching by pheromone 

communication to make path. As the ants are finding 

minimum path to reach the food source, the particles also try 

to obtain the best value to get optimum solution. Particle 

Swarm Optimization (PSO) is based on the ideas of social 

behavior of organisms such as bird flocking and fish 
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schooling. The basic idea is nearly similar to that of Ant 

Colony Optimization. 

C. Advantages of Heuristic Methods over Deterministic 

Methods: 

Deterministic methods use single path search methods while 

heuristic methods use population-based search techniques to 

search the solution hyperspace.  

It also improves the convergence for heuristic 

methods and makes it less dependent on the initial solution 

points. Being derivative-free, modern methods are 

applicable to any optimization problem regardless of the 

linearity or non-linearity of its objective function and 

constraints. 

IV. OPTIMAL POWER FLOW PROBLEM 

A. Problem Formulation: 

The optimal power flow problem is a nonlinear optimization 

problem. It consists of a nonlinear objective function 

defined with nonlinear constraints. The optimal power flow 

problem requires the solution of nonlinear equations, 

describing optimal and/or secure operation of power 

systems. The general optimal power flow problem can be 

expressed as a constrained optimization problem as follows: 

Minimize   f(x) 

Subject to g(x) = 0, equality constraints 

h(x) ≤ 0, inequality constraints 

B. Objective Function: 

The main objective function is to minimize the system 

active power loss. The control variables are generators bus 

voltages, transformer tap positions and switchable shunt 

capacitor banks. The equality constraints are power/reactive 

power equalities, the inequality constraints include bus 

voltage constraints, generator reactive power constraints, 

reactive source reactive power capacity constraints and the 

transformer tap position constraints, etc. The equality 

constraints can be automatically satisfied by load flow 

calculation, while the lower/upper limit of control variables 

corresponds to the coding on the Particle Swarm 

Optimization (PSO) algorithm, so the inequality constraints 

of the control variables are satisfied. 

1) Objective Function: 

F = min Ploss 

The different operating constraints are as follows: 

1) Real Power Constraints: 

( sin sin ) 0Gi Di i j ij ij ij ij

j i

P P V V G B 


            (1) 

i ∈ n, where set of numbers of buses except the swing bus 

2) Reactive Power Constraints: 

 ( sin sin ) 0Gi Di i j ij ij ij ij

j i

Q Q V V G B 


             (2) 

i ∈ n, where set of numbers of buses except the swing   bus 

3) Bus Voltage magnitude constraints: 

 mini i Ti iT T N T  
, min maxi i iV V V            (3) 

i ∈ n, set of total buses 

4) Generator bus reactive power constraints: 

  
min maxGi Gi GiQ Q Q                                                (4) 

  i ∈ {Npv, No} 

5) Reactive power source capacity constraints: 

          min maxci ci ciq q q                                  (5) 

          minci ci ci ciq q N q       , i ∈ Nc 

6) Transformer Tap position constraints: 

           min maxi i iT T T  
                  

                     (6) 

          mini i Ti iT T N T    , i ∈ NT 

where, 

 Ploss : System loss 

 Nb : Set of number of total buses 

 Nt : Set of number of tap-setting transformer 

branches 

 Nc : Set of number of possible reactive power 

source installation buses 

 Npv : Set of number of PV buses 

 N0 : The swing bus 

 PGi : Bus I real power supply 

 QGi : Bus I reactive power supply 

 PDi : Bus I real power load 

 QDi : Bus I reactive power load 

 Vi : Bus I voltage magnitude 

 θi : Bus I voltage phase angle 

 θij : Phase angle difference between bus I and j 

 Gij : Mutual conductance between bus I and j 

 Bij : Mutual susceptance between bus I and j 

 Gii : Self conductance of bus i 

 Bii : Self susceptance of bus I  

 qci : Reactive power source I installation 

 Tk : Transformer k tap 

 Vi-min, Vi-max : Bus I voltage limit 

 QGi-min, QGi-max : Reactive source I reactive power 

limit 

 Tk-min, Tk-max : Transformer k tap position limit 

 qc-min, qc-max : Reactive power source installation 

capacity limit 

V. PARTICLE SWARM OPTIMIZATION 

A. Introduction: 

An optimization technique using an analogy of swarm 

behavior of natural creatures was started in the beginning of 

the 1990s. Dorigo developed Ant Colony Optimization 

(ACO) based mainly on the social insect, especially ant. 

Each individual exchanges information through pheromones 

implicitly in ACO. Eberhart and Kennedy developed 

Particle Swarm Optimization (PSO) based on the analogy of 

swarms of birds and fish schooling. Each individual 

exchanges previous experiences in PSO. These research 

efforts are called swarm intelligence. 

Particle swarm optimization simulates the behavior 

of bird flocking. Imagine a group of birds, which are 

randomly searching food in an area. There is only one piece 

of food in the area being searched. All the birds do not know 

where that food is. But they know how far the food is in 

each iteration. So what’s the best strategy to find the food? 

The effective one is to follow the bird, which is nearest to 

the food. 
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B. Concept of PSO: 

In PSO, each single solution is a “bird” in the search space. 

Here it is called as “particle”. All of particles have fitness 

values, which are evaluated by the fitness function to be 

optimized, and have velocities, which direct the flying of the 

particles.  

PSO is initialized with a group of random particles 

(solutions) and then searches for optima by updating 

generations. In every iteration, each particle is updated by 

following two “best” values. The first one is the best 

solution (fitness) it has achieved so far. (The fitness value is 

also stored.) This value is called Pbest. Another “best” value 

that is tracked by the particle swarm optimizer is the best 

value, obtained so far by any particle in the population. This 

best value is a global best and called Gbest. 

After finding the two best values, the particle 

updates its velocity and positions with following eq. (1) and 

(2), 

1 2() ( ) () ( )id id id id gd idV V c rand P X c rand P X        
  (7) 

id id idX X V 
                                                                     (8) 

 
Fig. 1: Concept of modification of searching point 

Where, S
K
: Current searching point 

 S
K+1

: Modified searching point 

 V
K
: Current velocity 

 V
K+1

: Modified velocity 

 Vpbest: Velocity based on Pbest 

 Vgbest: Velocity based on Gbest 

Vid is the particle velocity and Xid is the current 

particle (solution). Pid and Pgd are Pbest and Gbest. Rand ( ) 

is a random number between (0, 1). cl and c2 are learning 

factors. Usually c1=c2=2. 

Particle velocities on each dimension are clamped 

to a maximum velocity Vmax, if the sum of accelerations 

would cause the velocity on that dimension to exceed Vmax – 

which is a parameter specified by the user. Then the velocity 

on that dimension is limited to Vmax. 

C. Flow-Chart Of PSO: 

The steps used in PSO algorithms are given below: 

1) Initial searching points and velocities are randomly 

generated within their limits. 

2) Pbest is set to each initial searching point. The best 

evaluated values among Pbest are set to Gbest. 

3) Evaluate the fitness values for new searching point. 

If evaluated values of each agent is better than 

previous Pbest then set to Pbest. If the best Pbest is 

better than best Gbest then set to Gbest. 

4) New velocities are calculated using the equation 

(7). 

5) If the maximum iteration is reached stop the 

process otherwise go to step3. 

6) The final values we get are the optimal solution of 

our problem. 

 
Fig. 2: Flow-chart of PSO 

D. PSO Control Parameters: 

1) Number of Particles: 

The typical range is 20-40. Actually for most of the 

problems 30 particles is large enough to get good results. 

For some difficult or special problems, one can try 100 or 

200 particles as well. 

2) Vmax: 

It determines the maximum change one particle can take 

during iteration. Usually the range of the particle is taken as 

the Vmax. For example, the particle (x1, x2, x3) x1 belongs 

[-5, 5], then Vmax=10. 

3) Learning Factors: 

c1 and c2 usually equal to 2. However, other settings were 

also used in different works. But usually c1 equals to c2 and 

ranges from [0, 4]. 

4) Stop Conditions: 

The maximum number of iterations the PSO execute and the 

minimum error requirement. This stop condition depends on 

the problem to be optimized. 

E. Merits and Demerits of PSO: 

1) Merits: 

1) Capable to solve large-scale non-convex 

optimization problems like OPF. 

2) Simple concept, easy implementation, relative 

robustness to control parameters and computational 

efficiency. 

3) Fast convergence 

4) PSO can easily deal with non-differentiable and 

non-convex objective functions 

5) PSO has the flexibility to control the balance 

between the global and local exploration of the 

search space 
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6) Every particle remembers its own previous best 

value as well as the neighborhood best; therefore, it 

has a more effective memory capability than the 

GA. 

2) Demerits: 

1) The candidate solutions in PSO are coded as a set 

of real numbers. But, most of the control variables 

such as transformer tap settings and switchable 

shunt capacitors change in discrete manner. Real 

coding of these variables represents a limitation of 

PSO methods as simple round-off calculations may 

lead to significant errors. 

2) Slow convergence in refined search stage (weak 

local search ability). 

VI. OPTIMIZATION RESULTS FOR PSO 

The superiority of PSO is verified on 6-bus test system and 

IEEE 30-bus test system as shown. The results are obtained 

on MATLAB 7.9.0.529 (2009b) with computer 

configurations 3rd generation core-2-i3, 4 GB RAM, 2.50 

GHz Processor and 64-bit operating system. 

The tests were carried out by solving the optimal 

power flow problem of the power loss objective in which 

variable limits as given in Table-1 are used as system 

constraints. The results are verified with the results 

presented in paper [1]. 

Variable 
Limits 

Min Max 

V1-V6 (p.u.) 0.90 1.1 

T1-T2 (p.u.) 0.90 1.1 

Q1,Q2 (MVAR) 0 50 

PG1(MW) 60 120 

PG2 (MW) 25 80 

Table 1: Variable limits used for OPF 

1 Population size 20 

2 Acceleration constant (C1, C2) 2.1 and 2.0 

3 Constriction factor(X) 0.621 

4 Max. and Min. inertia weights 1 and 0.2 

5 Max. and Min. velocity of particles 0.003 and -0.003 

6 Convergence criterion 75 iterations 

Table 2: selected parameters of PSO for 6-bus 

 
Real Power 

Losses 

Reactive Power 

Losses 

PSO 6.908 MW 21.21 MVAR 

Newton 

Method 
7.875 MW 24.17 MVAR 

Table 3: Results obtained for 6-bus test system 

1 Population size 50 

2 Acceleration constant (C1, C2) 2.1 and 2.0 

3 Constriction factor(X ) 0.719 

4 Max. and Min. inertia weights 1 and 0.2 

5 
Max. and Min. velocity of 

particles 

0.003 and -

0.003 

6 Convergence criterion 111 iterations 

Table 4: selected parameters of PSO for 30-bus 

 

 
Real Power 

Losses 

Reactive Power 

Losses 

PSO 15.6397 MW 61.48 MVAR 

Newton 

Method 
17.557 MW 67.69 MVAR 

Table 5: Results obtained for IEEE 30-bus system 

In fig.3, a graph of real power losses with respect 

to iteration numbers is shown. The real power losses are 

minimized as the number of iterations increases. The total 

numbers of iterations taken are 111. 

 
Fig. 3: Graph of real power losses for IEEE 30- bus test 

system using PSO 

These results show that the PSO algorithm is better 

than the Newton method as real power losses are minimized 

up to 12.28% and reactive power losses are minimized up to 

12.25% for 6-bus test system. While for IEEE 30-bus 

system, the real power losses are minimized up to 10.92% 

and reactive power losses are minimized up to 9.174%. The 

time taken by PSO to converge for IEEE 30-bus system is 

145 sec. 

VII. CONCLUSION 

In this paper, the significance of reactive power 

optimization, various optimization techniques, optimal 

power flow problem, basic concept of particle swarm 

optimization, and results of 6-bus test system IEEE 30-bus 

test systems are obtained. The results are verified with paper 

[1]. As the results are obtained for test systems, the 

computation time is not a major issue. The main objective of 

this paper is to reduce the active power losses in the 

transmission system and it is achieved. 
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