Use of Treated Domestic Waste Water as Mixing Water in Cement Mortar
A. Narender Reddy¹ K. Naveen² N. Siva Rani³
¹,²,³Department of Civil & Structural Engineering ²Department of Civil Engineering
¹Newtons Institute of Science & Technology, Macherla, Guntur Dist, Andhra Pradesh, India ²Nalanda Institute of Technology, Sattenapalli, Guntur Dist, Andhra Pradesh, India ³Nova College of Engineering & Technology, Janga Reddy Gudem, West Godavari Dist, Andhra Pradesh, India

Abstract— This study deals with the effect of treated domestic wastewater (TDWW) on properties of cement blended with 20% fly ash such as compressive strength, setting times and soundness. Water used for mortar includes portable water (PW), treated domestic wastewater (TDWW) and treated domestic wastewater (TDWW) partially replaced with portable water. This study analyses the quality of these types of waters as for standard methods for the examination of water and wastewater, APHA 1992. Then, tests were conducted on mortar. The setting times and soundness of blended cement with treated domestic wastewater (TDWW) and treated domestic wastewater (TDWW) partially replaced with portable water is as good as that with portable water. The compressive strength of blended cement mortar mixed with treated domestic wastewater and treated domestic wastewater partially replaced with portable water has very insignificantly affected. Therefore, it is suggested that treated domestic wastewater may be considered as mixing water for blended cement mortar where portable water resources are scarce. However, it is advised that long-term strength development and durability be studied before use.

Keywords: TDWW, PW, CPCB

I. INTRODUCTION

Water is life that is why it is called “Jeevan” in Sanskrit. Water sustains all biological life, eco-systems and human activities. It makes up 65% of our bodies and covers 70% of the area of our planet “earth”. It is essential for all food production from fields or healthy. Although water seems to be a common commodity, it is actually scarce on the earth. Less than 0.003% of the total water on the continents and islands each year is renewable fresh water falling as precipitation and evaporation from the oceans and the remainder (i.e.3%) is renewable through the cycle of permanent snow and in deep depths below ground. The remainder is not even registered. As per the latest inventory of Central Pollution Control Board (CPCB), there are about 8432 large and medium polluting industries in India. The number of small scale industries, which are established in unplanned areas and in an unsystematic manner. Such industries are located even in residential areas. A large number of them are not even registered. As per Central Water Commission (CWC,2005), the total wastewater generated from all major industrial sources is about 82,446 million liters per day. Water demand for industries in the year 2000 was 30 billion cubic meters, but water demand for industries is projected to be as high as 120 billion cubic meters in the year 2025. As against the problem of increased demand for water, the availability of usable quality of water is getting diminished every year all over the world and particularly in the developing countries, on account of the discharge of different types of industries discharging of treated and untreated wastewater into the environment, which are polluting the surface and subsurface sources of water. Particularly Industrial activities, which are growing rapidly, are also leading to generation of large quantities of wastewater and are also adversely polluting varies segments of the environment.

As per Central Statistical Organization (CSO), there are about 32 lakhs industries in India in the year 1998-99, out of which 1,35,551 are registered manufacturing industries. Remaining industries like taxi stands, restaurants, hotels, tailoring etc. As per the latest inventory of Central Pollution Control Board (CPCB), there are about 8432 large and medium polluting industries in India. The number of small scale industries, which are established in unplanned areas and in an unsystematic manner. Such industries are located even in residential areas. A large number of them are not even registered. As per Central Water Commission (CWC,2005), the total wastewater generated from all major industrial sources is about 82,446 million liters per day. Water demand for industries in the year 2000 was 30 billion cubic meters, but water demand for industries is projected to be as high as 120 billion cubic meters in the year 2025. As against the problem of increased demand for water, the availability of limited usable quality of water is again getting diminished every year all over the world and particularly in the developing countries. Hence, the demand for the use of treated wastewater from industries and domestic is bound to increase in the future. Efforts towards wastewater reuse have lately gained worldwide consideration and attention in both the agricultural and industrial fields. With all these consequences, reuse of
treated and partially treated industrial wastewater will have to be practiced extensively to conserve precious water resources and to get sustainable development. But a close scrutiny and a guide line document on the use of treated and partially treated wastewater is urgently needed.

All consequences are certainly being emphasized that Recycling and Reuse of wastewater will have to be practiced extensively for the sustainable development. Recycling and Reuse of various by-products i.e. industrial sludge, copper slag and iron steel slag etc. have been and being used for replacement of constituents of construction materials and obtained positive. Reuse of wastewater contaminated with chemical and biological substances and treated wastewater as mixing water in concrete have been studied few. In this connection, the present experimental studies are intended to use of treated industrial wastewater as mixing water in cement works. The parameters considered for strength development of cement include: Setting times, Compressive strength and Soundness of cement mortar cubes at different ageing periods (3 day, 7 day, 28 day, 75 day). IS 456:2000 specified that in cases of regarding development of strength, the suitability of water for making concrete shall be ascertained by the compressive strength and setting time tests.

II. MATERIALS

A. Cement:

53- Grade Cement is used in this Investigation.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Oxides</th>
<th>Percentage of contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CaO</td>
<td>65.49</td>
</tr>
<tr>
<td>2</td>
<td>SiO₂</td>
<td>21.67</td>
</tr>
<tr>
<td>3</td>
<td>Al₂O₃</td>
<td>5.97</td>
</tr>
<tr>
<td>4</td>
<td>Fe₂O₃</td>
<td>3.85</td>
</tr>
<tr>
<td>5</td>
<td>SO₃</td>
<td>1.66</td>
</tr>
<tr>
<td>6</td>
<td>MgO</td>
<td>0.78</td>
</tr>
<tr>
<td>7</td>
<td>K₂O</td>
<td>0.46</td>
</tr>
<tr>
<td>8</td>
<td>Na₂O</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table I: Chemical Combination of Cement

B. Sand:

The Sand used throughout the experimental work was obtained from the right side bank of river Krishna in Amaravathi Town, Guntur District.

C. Water:

Portable water (PW) and Treated Domestic waste water (TDWW) was used in our Investigation.

<table>
<thead>
<tr>
<th>Impurity (mg/l)</th>
<th>PW</th>
<th>TDWW</th>
<th>75% TDWW + 25% PW</th>
<th>50% TDWW + 50% PW</th>
<th>25% TDWW + 75% PW</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.5</td>
<td>10.99</td>
<td>10</td>
<td>9.8</td>
<td>9.1</td>
</tr>
<tr>
<td>Total solids</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Total organic solids</td>
<td>40</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Total inorganic solids</td>
<td>NI</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>100</td>
</tr>
</tbody>
</table>

Table II: Characteristics of PW & TDWW

III. RESULT AND DISCUSSION

The results of the present investigation are presented both in tabular and graphical forms. The interpretation of the results is based on the current knowledge available in the literature as well as on the nature of results obtained. The significance of the result is assessed with reference to the standards specified by the relevant IS Codes. Average of initial and final setting times of three cement samples prepared from different types of mixing water under consideration were compared with those of the cement specimens prepared from deionised water. As per (IS 456:2000), if the difference in setting times is less than 30 minutes, the change is considered to be insignificant. However, if the difference is more than 30 minutes, then the change is considered to be significant. The limits for significance criteria in setting times of all these samples under consideration are within the range of standards specified in IS 8112:1989. This IS Code prescribed that initial setting time should not be less than 30 minutes and final setting time should not be more than 600 minutes. An average compressive strength of at least three test specimens are compared with that of three similar reference specimens. As per (IS 456:2000), if the difference in the strength is less than 10 percent, it is considered to be insignificant and if greater than 10 percent, then the change is considered to be significant.

Average soundness test results of three samples were obtained. The unsoundness of the specific test sample of particular mixing water is significant if the results of Le-Chatelier’s test are more than 10mm as per (IS 456:2000). The IS 269:1976 code specifies the limit for soundness that the Le–Chatelier’s test result should not be more than 10 mm for ordinary Portland cements.

Table-II shows that the characteristics of the potable water (PW), and treated domestic waste water (TDWW), 75 % TDWW + 25 % PW, 50 % TDWW + 50 % PW, and 25 % TDWW + 75 % PW used in this experimental study.

A. Setting Times:

![Fig. 1: Setting Time for Different Proportions](image-url)
The effect of TDWW on setting times is given in Tables-III and shown in Fig.1. As shown in table and figure, the initial and final setting times are 3 and 2 minutes increased respectively, when compared with potable water. The effect of 75%TDWW+25%PW on setting times is given in Tables – III and shown in Fig.1. As shown in table and figure, the initial and final setting times are 2 and 2 minutes increased respectively, when compared with potable water. The effect of 50% TDWW+50%PW, and 25%TDWW+75%PW on setting times is given in Tables 4.1 and shown in Fig.4.1. As shown in table and figures, the initial and final setting times are 1 and 0 minutes increased respectively, when compared with potable water.

B. Compressive Strength:

When curing carried out in potable water, the effect of TDWW on compressive strength development is given in Table-IV and shown Fig.2. As shown in tables and figures, slow strength development is observed at early age (3 days). At 7, 28 and 75 days ,compressive strength is reduced by 4.84, 1.67, and 2.72 percent as compared to potable water respectively; however, decrease in compressive strength is insignificant in all specimens.

The effect of 75%TDWW+25%PW on compressive strength development is given in Tables–IV and shown Fig.4. As shown in tables and figures, at early age 3 days, decrease in compressive strength is observed by 3.09%. At 7 days, 28 and 75 days compressive strength is reduced by 3.74, 1.95, and 3.60 percent as compared to potable water respectively; however, decrease in compressive strength is insignificant in all the specimens.

When curing carried out in TDWW, the effect of TDWW on compressive strength development is given in Table IV and shown Fig.3. As shown in tables and figures, at early age 3 days, decrease in compressive strength is observed by 8.88%. At 7 days 28 and 75 days compressive strength is reduced by 2.14, 1.59, and 3.01 percent as compared to potable water respectively; however, decrease in compressive strength is insignificant in all specimens.

The effect of 50%TDWW+50%PW on compressive strength development is given in Tables-IV and shown Fig.5. As shown in tables and figures, at early age 3 days, decrease in compressive strength is observed by 3.52%. At 7 days 28 and 75 days, compressive strength is decreased by 4.67, 1.87, and 2.45 percent as compared that of potable water respectively; however, decreased in compressive strength is insignificant in all the specimens.

The effect of 25%TDWW+75%PW on compressive strength development is given in Tables-IV and shown Fig.6. As shown in tables and figures, at early age 3 days, decrease in compressive strength is observed by 3.71%. At 7 days, 28 and 75 days compressive strength is reduced by 4.97, 1.43, and 3.71 percent as compared to potable water respectively; however, decrease in compressive strength is insignificant in all the specimens.
Use of Treated Domestic Waste Water as Mixing Water in Cement Mortar

Fig. 6: Effect of mixing water on % change in Compressive Strength

Fig. 7: Effect of mixing water on % change in Compressive Strength

S.no	Description	Initial (min)	Final (min)	Soundness (mm)
1 | 100% TDWW cured in PW | 92 | 286 | 1.05 |
2 | 100% TDWW cured in TDWW | 92 | 286 | 1.05 |
3 | 75% TDWW + 25% PW cured in PW | 91 | 286 | 1.05 |
4 | 50% TDWW + 50% PW cured in PW | 90 | 284 | 0.7 |
5 | 25% TDWW + 75% PW cured in PW | 90 | 284 | 0.7 |
6 | 100% PW cured in PW | 89 | 284 | 0.7 |

Table III: Initial Setting, Final Setting Time & Soundness for Different Mixes

S.no	Description	3-days	7-days	28-days	75-days
1 | 100% TDWW cured in PW | 43.36 mpa | 50.16 mpa | 61.93 mpa | 68.73 mpa |
2 | 100% TDWW cured in TDWW | 42.97 mpa | 51.58 mpa | 61.98 mpa | 68.52 mpa |
3 | 75% TDWW + 25% PW cured in PW | 45.70 mpa | 50.74 mpa | 61.74 mpa | 68.11 mpa |

Table IV: Compressive Strength of Different Mixes

C. Soundness:
The effect of different mixing waters on Soundness is given in table-III and shown in fig 8. The expansion measured are 0.5mm, 0.67 mm for PW, TDWW, 75% TDWW + 25%PW, 50% TDWW + 50% PW, and 25% TDWW + 75%PW respectively.

Fig. 8: Soundness for Different Proportions

IV. CONCLUSION

Setting times are found to very insignificantly increase in all types of mixing water when compared with potable water. There are no adverse effects on resulting in compressive strength, when cement mortar specimens made with TDWW and cured in same water. As the measured values are less than 10 mm; all the samples are considered sound. The present experimental study confirms the feasibility of using TDWW in cement mortar.

REFERENCES

