Implementation of Position Sensorless Control Based on Coordinate Transformation for Brushless DC Motor Drives

Shivanand N Sonnad¹ Manish G Rathi²

Abstract—This paper presents a novel method for sensorless brushless dc (BLDC) motor drives. Based on the characteristics of the back electromotive force (EMF), the rotor position signals would be constructed. It is intended to construct these signals which make the phase difference between constructed signals and back EMF controllable, then rotor position error can be compensated by controlling the phase difference angle in real time. In this paper, the rotor position detection error is analyzed. Experiments are implemented on a 16F877A Microcontroller chip as a control core to demonstrate the feasibility of suggested sensorless control.

Key words: Brushless dc (BLDC) motor, compensation, coordinate transform, sensorless, rotor position-detection error.

I. INTRODUCTION

In recent years, the permanent magnet (PM) brushless dc motor (BLDC) is receiving much interest in automotive computer, industrial and household products, etc. due to its high efficiency, compact size, lower maintenance and ease of control. The three-phase y-connected BLDC motors are usually supplied with a six-step 2π/3-inverter and for assuring the normal system operation, the rotor position signals are necessary. Traditionally, a rotor position sensor such as hall element is used for detecting the rotor position in BLDC motor due to its simplicity and low cost. However, the rotor position sensors show disadvantages from the standpoint of total system cost, size and reliability consequently, for eliminating these sensors from motor, many research workers have attempted to control the speed of BLDC motors without rotor position sensors or speed sensors.

In this paper, taking a surface-mounted Permanent Magnet BLDC motor as the research object, of which the air-gap flux has a trapezoidal shape, new sensorless-control method is proposed. It is based on coordinate transformation. In order to compensate the rotor-position detection error and obtain the commutation sequences, two coordinates are defined, which are named as “a” and “b”. For compensating the error, the angle β, which is between “b” coordinate and “a” coordinate, respectively is controlled in real time and zero-crossing instants of constructed position signals that are the projections on “b” coordinate from “a” coordinate, are just the phase commutation instants. The proposed method only needs two-phase terminal voltage signals, not to simulate the neutral voltage of the motor, and the detection error could be compensated in real time. Consequently, it is more suitable for the wide speed range.

II. TRADITIONAL SENSORLESS METHOD

Generally, there are three parts for sensorless BLDC motor drives, which are the inverter, the back EMF detection circuit, and the control unit, respectively, as shown in Fig 2.1. In this section, the error compensation methods are reviewed, and the rotor-position-detection error is analyzed.

2.1. Implementation of Position Sensorless Control—Brushless DC Motor Drives

As shown in Fig 2.1, the back EMF zero-crossing detection circuit is composed of four parts, including the resistance network, divider voltage circuit, first-order low pass filter and comparators in the PWM. R2, R3 and R4 constitute the resistance network which is used for simulating the motor neutral point voltage if the neutral wire of the BLDC motor is not available. R0 and R1 constitute the divider voltage circuit, which is used to reduce the terminal voltage so that the signal is sampled between +15v and -15v if the comparators are supplied by the +15v power source. The voltage dividers and the capacitances constitute the low pass filters, the filters have two functions as follows; 1) eliminating the chopped pulses caused by the pulse width modulation (PWM) operation, appearing along with the back EMF, and 2) making the back emf delay by π/6 electrical radians at the rated speed, in order to obtain commutation timing. The comparators are used for generating the rotor position pulse signals, by comparing the signals Ua-Ub and Ub-Uc. If Ua is greater than Ub then the comparator outputs high level, else the comparator outputs low level, which is expressed as S0 in figure 2.1. At the rising edge of S0, the MOSFET T1 is on and MOSFET T5 is off. At the falling edge of S0, the MOSFET T2 is on and the MOSFET T6 is off. Similarly, according to the rising and falling edges of S0 and S1, other commutation instants could be obtained.

A. Analysis Of The Rotor-Position-Detection Error

In a PM BLDC motor, the transient value of flux linkage in each phase winding is directly related to the rotor position. However, the back EMF is due to the rate of change of flux linkages, which is mainly excited by the PM on the surface of the rotor; hence, the back EMF can be indirectly related to the rotor position, and used for position sensorless control. For implementing the proposed method, the 16F877A Microcontroller chip is used.
B. Error Caused By The Low-Pass Filters.

Usually, the terminal or phase voltages are used for sensorless control, as the back EMF is difficult to be detected directly. The terminal voltage is the combination of dc and harmonic components generated by PWM operation. The magnitude of the dc component varies directly with the duty cycle of PWM, and the frequencies of harmonic components are multiples of the carrier frequency. For extracting the back EMF, there may be low-pass filters to eliminate the chopped pulses from the terminal voltages. The parameters of the filters would be usually designed according to the rated rotation speed of the prototype.

![Diagram of Commutation Instant](image)

Fig. 2: Commutation instant for the normal rotation

The phase-response function of the adopted low-pass filter is given by:

\[
\alpha(\omega) = \tan^{-1}\left(\frac{R_0 R_1 C \omega}{R_0 + R_1}\right) \quad \ldots(1)
\]

where

\[R_0 = 20 \text{ k}\Omega, \quad R_1 = 2 \text{ k}\Omega\] the divider resistors;

\[C = 0.47 \text{ \mu F}\] the filter capacitor;

\[\omega = 2\pi f\] the angular frequency and \(f\) is the fundamental frequency.

Fig. 3: Commutation instant for the reversing rotation

The phase shift depends on the speed of the rotor. However, the winding current should be commutated at \(\pi/6\) (electrical degrees) lagged behind back EMF zero-crossing point hence, the error due to filters under different speeds should be taken into account. Fig. 2.2 shows the back EMF, the filtered terminal voltage, and the commutation instant. The commutation instant should be the time that lags behind the zero-crossing point of the back EMF by \(\pi/6\), e.g., the B point as shown in Fig. 2.3. The filtered terminal voltage lags behind the back EMF by the angle \(\alpha\), which could be calculated by equation (1), assuming that the position detection errors, due to the armature reaction, sampling, and the uncertainty of the devices, are negligible. For the normal rotation, the filter is usually designed to make the filtered terminal voltage lag behind the back EMF by \(\pi/6\) at the rated speed, and the commutation instant is just the zero-crossing point of the filtered terminal voltage, but at the other speed, \(\alpha\) is not \(\pi/6\). If \(n\) (the rotation speed) is lower than \(nN\) (the rated speed), then \(\alpha\) is smaller than \(\pi/6\), else if \(n\) is higher than \(nN\), then \(\alpha\) is larger than \(\pi/6\).

As shown in Fig. 2.2 from 0 to \(nN\), A point approaches to B point, whereas it is further away from B point under reversion rotation as shown in Fig. 2.3. Consequently, the commutation instant should lag behind the zero-crossing point of the filtered terminal voltage by the angle \(\beta\) as expressed in equation (2).

\[
\beta = \left\{ \begin{array}{ll}
\frac{\pi}{6} - \alpha(\omega), & \text{(for natural operation)} \\
\frac{\pi}{6} + \alpha(\omega), & \text{(for reverse operation)}
\end{array} \right. \quad \ldots(2)
\]

III. PROPOSED ARITHMETIC FOR SENSORLESS BLDC DRIVES

A. Constructed Position Signals Based On Coordinate Transformation

![Diagram of Coordinate Transformation](image)

Fig. 4: Coordinate transformation.

In this section, two coordinates are defined, which are named as “a” and “b,” as shown in Fig. 3. The angle \(\beta\) is between “b” coordinate and “a” coordinate, respectively. \(E_a, E_b,\) and \(E_c\) are the three-phase filtered-terminal voltages, which are defined as “a” coordinate. The projections on “b” coordinate from “a” coordinate are defined as \(E^b_a, E^b_b, E^b_c\). To begin with, the phase relationship between \(E^b_a\) and \(E_a\), characteristics of \(E^b_a\) will be analyzed. Then, Fourier expansions for \(E_a, E_b,\) and \(E_c\) are given in equation (3).

\[E_a = \frac{U_d}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t) + b_n \sin(n\omega t) \right] \]

\[E_b = \frac{U_d}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t + \frac{2\pi}{3}) + b_n \sin(n\omega t + \frac{2\pi}{3}) \right] \]

\[E_c = \frac{U_d}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega t - \frac{2\pi}{3}) + b_n \sin(n\omega t - \frac{2\pi}{3}) \right] \]

where \(U_d\) is the dc bus voltage. The projections on “b” coordinate from “a” coordinate are given in (4). The mathematical expression of \(E^b_a\) as given in (5) is obtained by substituting (3) into (4). From (5), the characteristics of \(E^b_a\) can be seen as expressed in (6). From (6), the characteristics of \(E^b_a\) can be summarized as follows: 1) the dc component is eliminated; 2) the 3th harmonic is eliminated and 3) \(E^b_a\) is just the fundamental wave if the fifth harmonic component and other higher harmonic components can be neglected, and the phase difference between \(E^b_a\) and the fundamental component of \(E_a\) is just the
angle \(\beta \), which can be controlled in real time. According to the three-phase symmetric relationship, \(E_{ab}, E_{bc} \) also have these characteristics.

\[
\begin{align*}
E_{a} &= E_{a} \cos \beta + E_{b} \cos \left(\frac{2\pi}{3} \beta \right) + E_{c} \cos \left(\frac{4\pi}{3} \beta \right) \\
E_{b} &= E_{b} \cos \beta + E_{c} \cos \left(\frac{2\pi}{3} \beta \right) + E_{a} \cos \left(\frac{4\pi}{3} \beta \right) \\
E_{c} &= E_{c} \cos \beta + E_{a} \cos \left(\frac{2\pi}{3} \beta \right) + E_{b} \cos \left(\frac{4\pi}{3} \beta \right)
\end{align*}
\]

……………………. (4)

\[
E_{a} = \sum_{n=1}^{\infty} a_{n} \left(2 \cos \beta \cos [n \omega t] \sin \left(\frac{n\pi}{3} \right) \right) \\
+ b_{n} \left(\sqrt{3} \sin \beta \sin \left(\frac{n\pi}{3} \right) \sin [n \omega t] \right) \]

\[
= \sqrt{3} \sin \beta \sin \left(\frac{2n\pi}{3} \right) \sin [n \omega t] + 2 \cos \beta \sin [n \omega t] \sin \left(\frac{n\pi}{3} \right) \]

……………(5)

\[
\begin{align*}
E_{a}(0) &= 0 \\
E_{a}(1) &= \frac{1}{2} \left(a_{1} \cos \beta + b_{1} \sin \beta \right) \\
E_{a}(3n) &= 0
\end{align*}
\]

Where \(E_{a}(0) \) is the dc component of \(E_{a} \), \(E_{a}(1) \) is the fundamental component of \(E_{a} \) and \(E_{a}(3n) \) is the 3n\(^{th} \) harmonic components.

The back EMF, which is trapezoidal, contains only odd harmonics. Therefore, the phase of \(E_{a} \) is the same as the fundamental phase of \(E_{a} \). The advantages of the proposed arithmetic can be summarized as follows: 1) using the angle \(\beta \), the rotor position-detection error could be compensated; 2) the neutral point voltage in PVM. Because the dc component is eliminated by the coordinate transform, the zero-crossing points of \(E_{a} \) can be used for commutation; and 3) it can be seen that the amplitude of \(E_{a} \) is 1.5 times the amplitude of the fundamental of \(E_{a} \), which enables better estimation of the zero-crossing points than conventional methods \(E_{a} \) could be regarded as fundamental wave if the higher harmonics are neglected.

B. Hardware Implementation

The proposed sensorless BLDC motor drive system could be designed as shown in Fig. 3.2. In comparison with Fig 2.1, the back EMF zero-crossing detection circuit is substituted by the back EMF sampling circuit, which includes the low-pass filters, the sampling circuit, and the regulation circuit. The filters are used for eliminating the chopped pulse caused by the PWM operation. The sampling circuit, which is galvanically isolated from the Microcontroller would sample the filtered terminal voltage to the regulation circuit, and the regulation circuit would scale down the filtered terminal voltage between 0 and +3 V, which could be read by the Microcontroller. For simplifying the hardware circuit, the phase C terminal voltage is not sampled, which could be reconstructed by \(E_{a} \) and \(E_{b} \) according to the three-phase symmetry property. It could be easily implemented by programming.

![Fig. 5: Proposed Sensorless BLDC Motor-Drive System](image)

![Fig. 6: Switching Sequences Of 6 Mosfet’s](image)

![Fig. 7: Software flowchart](image)
IV. EXPERIMENTAL RESULTS
The proposed arithmetic for sensorless BLDC motor drive has been successfully implemented on the experimental BLDC motor, and its specification is shown in table 1.

<table>
<thead>
<tr>
<th>Motor Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated DC voltage (V)</td>
</tr>
<tr>
<td>Rated speed (rpm)</td>
</tr>
<tr>
<td>Number of phases</td>
</tr>
<tr>
<td>Number of poles</td>
</tr>
<tr>
<td>Output power (W)</td>
</tr>
</tbody>
</table>

V. CONCLUSION
A novel arithmetic for sensorless BLDC motor drives has been presented in this paper. The rotor-position signals, e.g., E_{1a}, E_{1b}, and E_{1c} are constructed by the two-phase terminal voltages, which can be used for commutation. The proposed sensorless-control method has the following advantages: 1) it only needs two-phase terminal 1 voltage signals, without using the neutral voltage signal of the motor and 2) in order to obtain the commutation instants, the rotor-position-detection error could be calculated in real time, and compensated by computing the angle β, over the speed range. Experimental results are verified by the hardware.

REFERENCES
[7] Tae-Won Chun, Quang-Vinh Tran, Hong-Hee Lee and Heung-Geun Kim, “Sensorless Control of BLDC Motor Drive for an Automotive Fuel Pump Using a Hysteresis Comparator” 2013 IEEE.