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Abstract— While demands on video traffic above mobile 

webs have been souring, the wireless link capacity cannot 

retain up alongside the traffic demand. The gap amid the 

traffic demand and the link capacity, alongside alongside 

time-varying link conditions, aftermath in poor ability 

quality of video streaming above mobile webs such as long 

buffering period and intermittent disruptions. Leveraging the 

cloud computing knowledge, we counsel a new mobile 

video streaming framework, dubbed AMES-Cloud,  that has 

two main parts: AMoV (adaptive mobile video streaming) 

and ESoV (efficient communal video sharing). AMoV and 

ESoV craft a confidential agent to furnish video streaming 

services effectually for every single mobile user. For a given 

user, AMoV lets her confidential agent adaptively adjust her 

streaming flow alongside a scalable video coding method 

established on the feedback of link quality. Likewise, ESoV 

monitors the communal web contact amid mobile users, and 

their confidential agents endeavor to prefetch video content 

in advance. We apply a prototype of the AMES-Cloud 

framework to clarify its performance. It is shown that the 

private 

Key words: Scalable Video Coding, Adaptive Video 
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I. INTRODUCTION 

Over the past decade, increasingly more traffic is accounted 

by video streaming and downloading. In particular, video 

streaming services over mobile networks have become 

prevalent over the past few years [1]. While the video 

streaming is not so challenging in wired networks, mobile 

networks have been suffering from video traffic 

transmissions over scarce bandwidth of wireless links. 

Despite network operators’ desperate efforts to enhance 

the wireless link bandwidth (e.g., 3G and LTE), soaring 

video traffic demands from mobile users are rapidly 

overwhelming the wireless link capacity. 

While receiving video streaming traffic via 3G/4G 

mobile networks, mobile users often suffer from long 

buffering time and intermittent disruptions due to the 

limited bandwidth and link condition fluctuation caused by 

multi-path fading and user mobility [2] [3] [4]. Thus, it is 

crucial to improve the service quality of mobile video 

streaming while using the networking and computing 

resources efficiently [5] [6] [7] [8]. 

Recently there have been many studies on how to 

improve the service quality of mobile video streaming on 

two aspects: 

A. Scalability:  

Mobile video streaming services should support a wide 

spectrum of mobile devices; they have different video 

resolutions, different computing powers, different wireless 

links (like 3G and LTE) and so on. Also, the available link 

capacity of a mobile device may vary over time and space 

depending on its signal strength, other users traffic in the 

same cell, and link condition variation. Storing multiple 

versions (with different bit rates) of the same video content 

may incur high overhead in terms of storage and 

communication. To address this issue, the Scalable Video 

Coding (SVC) technique (Annex G extension) of the H.264 

AVC video compression standard [9] [10] [11] defines a 

base layer (BL) with multiple enhance layers (ELs). These 

substreams can be encoded by exploiting three scalability 

features: (i) spatial scalability by layering image resolution 

(screen pixels), (ii) temporal scalability by layering the 

frame rate, and (iii) quality scalability by layering the image 

compression. By the SVC, a video can be decoded/played at 

the lowest quality if only the BL is delivered. However, the 

more ELs can be delivered, the better quality of the video 

stream is achieved. 

B. Adaptability: 

Traditional video streaming techniques designed by 

considering relatively stable traffic links between servers 

and users, perform poorly in mobile environments [2]. 

Thus the fluctuating wireless link status should be 

properly dealt with to provide ‘tolerable” video streaming 

services. To address this issue, we have to adjust the video 

bit rate adapting to the currently time-varying available link 

bandwidth of each mobile user. Such adaptive streaming 

techniques can effectively reduce packet losses and 

bandwidth waste. 

Scalable video coding and adaptive streaming 

techniques can be jointly combined to accomplish 

effectively the best possible quality of video streaming 

services. That is, we can dynamically adjust the number of 

SVC layers depending on the current link status [9] [12]. 

However most of the proposals seeking to jointly 

utilize the video scalability and adaptability rely on the 

active control on the server side. That is, every mobile 

user needs to individually report the transmission status 

(e.g., packet loss, delay and signal quality) periodically to 

the server, which predicts the available bandwidth for 

each user. Thus the problem is that the server should take 

over the substantial processing overhead, as the number of 

users increases. 

Cloud computing techniques are poised to flexibly 

provide scalable resources to content/service providers, and 

process offloading to mobile users [13] [14] [15] [16] [17] 

[18] [19]. Thus, cloud data centers can easily provision for 

large-scale real-time video services as investigated in [9] 

[20]. Several studies on mobile cloud computing 

technologies have proposed to generate personalized 

intelligent agents for servicing mobile users, e.g., 

Cloudlet [21] and Stratus [22]. This is because, in the cloud, 

multiple agent instances (or threads) can be maintained 

dynamically and efficiently depending on the time-varying 

user demands. 

Recently social network services (SNSs) have 

been increasingly popular. There have been proposals to 
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improve the quality of content delivery using SNSs [23] 

[24]. In SNSs, users may share, comment or re-post videos 

among friends and members in the same group, which 

implies a user may watch a video that her friends have 

recommended (e.g. [24]). Users in SNSs can also follow 

famous and popular users based on their interests (e.g., an 

official facebook or twitter account that shares the newest 

pop music videos), which is likely to be watched by its 

followers. 

In this regard, we are further motivated to exploit 

the relationship among mobile users from their SNS 

activities in order to prefetch in advance the beginning part 

of the video or even the whole video to the members of a 

group who have not seen the video yet. It can be done by a 

background job supported by the agent (of a member) in the 

cloud; once the user clicks to watch the video, it can 

instantly start playing. 

In this paper, we design a adaptive video streaming and 

prefetching framework for mobile users with the above 

objectives in mind, dubbed AMES-Cloud. AMES-Cloud 

constructs a private agent for each mobile user in cloud 

computing environments, which is used by its two main 

parts: (i) AMoV (adaptive mobile video streaming), and 

ESoV (efficient social video sharing). The contributions of 

this paper can be summarized as follows: 

 AMoV offers the best possible streaming 

experiences by adaptively controlling the streaming 

bit rate depending on the fluctuation of the link 

quality. AMoV adjusts the bit rate for each user 

leveraging the scalable video coding. The private 

agent of a user keeps track of the feedback 

information on the link status. Private agents of 

users are dynamically initiated and optimized in 

the cloud computing platform. Also the real-time 

SVC coding is done on the cloud computing side 

efficiently. 

 AMES-Cloud supports distributing video streams 

efficiently by facilitating a 2-tier structure: the 

first tier is a content delivery network, and the 

second tier is a data center. With this structure, 

video sharing can be optimized within the cloud. 

Unnecessary redundant downloads of popular 

videos can be prevented [25] [26]. 

 Based on the analysis of the SNS activities of 

mobile users, ESoV seeks to provide a user with 

instant playing of video clips by prefetching the 

video clips in advance from her private agent to the 

local storage of her device. The strength of the 

social links between users and the history of 

various social activities can probabilistically 

determine how much and which video will be 

prefetched. 

The rest of the paper is organized as follows. We 

first introduce related work in SectionII, and explain 

the AMES-Cloud framework in Section III. The adaptive 

video streaming service and the efficient social video 

sharing will be detailed in Sections IV and V, 

respectively. Then the operations of AMES-Cloud is 

illustrated in Section VI. Finally, we evaluate the 

prototype implementation in Section VII, and conclude 

the paper in Section VIII. 

II. RELETED WORK 

 

Fig. 1: An illustration of the AMES-Cloud framework 

A. Adaptive Video Streaming Techniques 

In the adaptive streaming, the video traffic rate is adjusted 

on the hover so that a user can experience the maximum 

probable video quality established on his or her link’s time-

varying bandwidth capacity [2]. There are generally two 

kinds of adaptive streaming methods, reliant on whether the 

adaptivity is manipulated by the client or the server. The 

Microsoft’s Flat Streaming [27] is a live adaptive streaming 

ability that can switch amid disparate bit rate segments 

encoded alongside configurable bit rates and video 

resolutions at servers, as clients vibrantly appeal videos 

established on innate monitoring of link quality. Adobe and 

Apple additionally industrialized client-side HTTP adaptive 

live streaming resolutions working in the comparable 

manner. There are additionally a little comparable adaptive 

streaming services whereas servers controls the adaptive 

transmission of video segments, for example, the Quavlive 

Adaptive Streaming. Though, most of these resolutions 

uphold several duplicates of the video content alongside 

disparate bit rates, that brings huge burden of storage on the 

server. 

Regarding rate adaptation manipulating methods, 

TCP-friendly rate manipulation methods for streaming 

services above mobile webs are counseled [28] [29], 

whereas TCP throughput of a flow is forecasted as a purpose 

of packet defeat rate, round journey period, and packet size. 

Thinking the approximated throughput, the bit rate of the 

streaming traffic can be adjusted. A rate adaptation 

algorithm for conversational 3G video streaming is gave by 

[30]. Then, a  insufficient cross-layer adaptation methods 

are debated [31] [32], that can buy extra precise data of link 

quality so that the rate adaptation can be extra precisely 

made. Though, the servers have to always manipulation and 

therefore tolerate from colossal workload. 

Recently the H.264 Scalable Video Coding (SVC) 

method has obtained a momentum [10]. An adaptive video 

streaming arrangement established on SVC is used in [9], 

that studies the real-time SVC decoding and encoding at PC 

servers. The work in [12] proposes a quality-oriented 

scalable video transport employing SVC, but it is merely 

tested in a simulated LTE Network. Considering the 

encoding presentation of SVC, CloudStream generally 

proposes to hold high-quality streaming videos across a 

cloud-based SVC proxy [20], that discovered that the cloud 

computing can considerably enhance the presentation of 

SVC coding. The above studies inspire us to use SVC for 

video streaming on top of cloud computing. 
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B. Mobile Cloud Computing Techniques 

More presently, new sketches for users on top of mobile 

cloud computing settings are counseled, that virtualize 

confidential agents that are in price of satisfyinh the 

necessities (e.g. QoS) of individual users such as Cloudlets 

[21] and Stratus [22]. Thus, we are motivated to design the 

AMES-Cloud framework by employing adjacent a gents in 

the cloud to furnish adaptive video streaming services. 

III. AMES-CL O U D FR 

The cloud computing has been well positioned to furnish 

video streaming services, exceptionally in the wired Internet 

because of its scalability and capability[13]. For example, 

the quality-assured bandwidth auto-scaling for VoD 

streaming established on the cloud computing is counseled 

[14], and the CALMS framework [33] is a cloud- assisted 

live mass media streaming ability for globally distributed 

users. Though, spreading the cloud computing-based 

services to mobile environments requires more factors to 

consider: wireless link dynamics, user mobility, the limited 

capability of mobile devices [34] [35]. A M E WO R K 

In this section we explain the AMES-Cloud framework 

includes the Adaptive Mobile Video streaming (AMoV) 

and the Efficient Social Video sharing (ESoV). 

As shown in Fig. 1, the whole video storing and 

streaming system in the cloud is called the Video Cloud 

(VC). In the VC, there is a large-scale video base (VB), 

which stores the most of the popular video clips for the 

video service providers (VSPs). A temporal video base 

(tempVB) is used to cache new candidates for the popular 

videos, while tempVB counts the access frequency of each 

video. The VC keeps running a collector to seek videos 

which are already popular in VSPs, and will re-encode the 

collected videos into SVC format and store into tempVB 

first. By this 2-tier storage, the AMES-Cloud can keep 

serving most of popular videos eternally. Note that 

management work will be handled by the controller in the 

VC. 

Specialized for each mobile user, a sub-video cloud 

(subVC) is created dynamically if there is any video 

streaming demand from the user. The sub-VC has a sub 

video base (subVB), which stores the recently fetched video 

segments. Note that the video deliveries among the subVCs 

and the VC in most cases are actually not “copy”, but just 

“link” operations on the same file eternally within the cloud 

data center [36]. There is also encoding function in subVC 

(actually a smaller-scale encoder instance of the encoder 

in VC), and if the mobile user demands a new video, 

which is not in the subVB or the VB in VC, the subVC will 

fetch, encode and transfer the video. During video 

streaming, mobile users will always report link conditions 

to their corresponding subVCs, and then the subVCs offer 

adaptive video streams. Note that each mobile device also 

has a temporary caching storage, which is called local 

video base (localVB), and is used for buffering and 

prefetching. 

Note that as the cloud service may across different 

places, or even continents, so in the case of a video 

delivery and prefetching between different data centers, an 

transmission will be carried out, which can be then called 

“copy”. And because of the optimal deployment of data 

centers, as well as the capable links among the data centers, 

the “copy” of a large video file takes tiny delay [36]. 

 

Fig. 2: A comparison of the traditional video streaming, 

the scalable video streaming and the streaming in the 

AMES-Cloud framework. 

IV. AMOV: ADA P T I V E MO B I L E VI D E O ST R E A M I 

N G 

A. SVC 

As shown in Fig. 2, established video streams alongside 

fixed bit rates cannot change to the variation of the link 

quality. For a particular bit rate, if the sustainable link 

bandwidth varies far, the video streaming can be oftentimes 

terminated due to the packet loss. 

In  SVC,  a  combination of  the  three  lowest 

scalability is  shouted  the  Center  Layer  (BL)  as  the  

enhanced combinations are shouted Enhancement Layers 

(ELs). To this stare, if BL is guaranteed to be held, as extra 

ELs can be additionally obtained after the link can afford, a 

larger video quality can be expected. 

By employing SVC encoding methods, the server 

doesn’t demand to concern the client side or the link quality. 

Even a little packets are capitulated, the client yet can 

decode the video and display. But this is yet not bandwidth-

efficient due to the unnecessary packet loss. So it is vital to 

manipulation the SVC-based video streaming at the server 

side alongside the rate adaptation method to effectually use 

the bandwidth 

 

Fig. 3: Functional structure of the client and the subVC 

B. Adaptability with Monitoring on Link Quality 

We design the mobile client and the subVC with the 

structure as shown in Fig. 3. The link quality monitor at 

mobile client keeps tracking on metrics including signal 

strength, packet round-trip-time (RTT), jitter and packet 

loss with a certain duty cycle. And the client will 

periodically report to the subVC. Hereby we define the 
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0 

cycle period for the reporting as the “time window”, 

denoted by Twin , Note that the video is also split by 

temporal segmentation by interval Twin . 

Once the subVC gets the information of the link 

quality, it will perform a calculation and predict the 

potential bandwidth in the next time window. Note that 

we will use “predicted bandwidth” and “predicted 

goodput” interchangeably in following parts. 

Suppose sequence number of current time window is i, the 

predicted bandwidth can be estimated by: 

i+1         = BWi             · [α · f (pi , pi−1 ) 

+β · g (RT Ti , RT Ti−1) + γ · h (SI N Ri , SI N Ri−1)] 

where, α + β + γ = 1 indicating the importance of each 

factor, p is for packet loss rate, RT T is for RTT, SI N R 

is for the signal to interference and noise ratio, and f (), 

g(), h() are three functions reflecting the value change of 

each factor compared with that of last time window. 

Actually in this paper we deploy a measurement-

based prediction, that is we directly use BW BW 

i
practical

of last time window as the BW i+1
estimate

of next time 

window, which is proved with already high accuracy [37]. 

C. Matching between Bandwidth Prediction and SVC 

Segments 

After obtaining the predicted bandwidth, or say goodput, of 

next time window, subVC will match and decide how many 

video segments of BL and ELs can be transmitted 

approximately. We hereby define the term “resolution” to 

indicate the level of temporal segmentation and the number 

of ELs. If Twin is small and there are more ELs, we say the 

SVC-based video source is with a higher resolution. We 

illustrate two cases of low resolution and a relatively high 

resolution for matching between the SVC segments and 

the predicted goodput in Fig. 4. The resolution with two 

ELs and a larger Twin  can hardly fit to the signal 

fluctuation, and thus there are some bandwidth wasted or 

packets lost. In contrast a higher resolution with more ELs 

and a smaller Twin can always fit the fluctuation of the 

bandwidth. However a higher resolution also induces more 

encoding workload to the servers. 

 

 

Fig. 4.    Matching between predicted bandwidth and SVC-

segments with different resolutions 

Suppose there are totally j ELs, and the bit rate of the 

jth EL is denoted as RELj    while the bit rate of the BL 

is RBL ). We let BLi indicate the SVC segment of BL 

with temporal sequence i, and let E L
j
i . indicate the 

SVC segment of the jth EL with temporal sequence i. 

So the algorithm of matching between predicted 

bandwidth and SVC segments is shown in Algorithm 1 as 

following: 

V. ESOV: EFFIC I E N T SO C I A L VI D E O SH A R I N G 

A. Social Content Sharing 

In SNSs, users subscribe to known friends, famous people, 

and particular interested content publishers as well; also 

there are various types of social activities among users in 

SNSs, such as direct message and public posting. For 

spreading videos in SNSs, one can post a video in the 

public, and his/her subscribers can quickly see it; one can 

also directly recommend a video to specified friend(s); 

furthermore one can periodically get noticed by subscribed 

content publisher for new or popular videos. 

Similar to studies in [23] [24], we define different 

strength levels for those social activities to indicate the 

probability that the video shared by one user may be 

watched by the receivers of the one’s sharing activities, 

which is called a “hitting probability”, so that subVCs can 

carry out effective background prefetching at subVB and 

even localVB. Because after a video sharing activity, there 

may be a certain delay that the recipient gets to know the 

sharing, and initiates to watch [38]. Therefore the 

prefetching in prior will not impact the users at most 

cases. Instead, a user can click to see without any buffering 

delay as the beginning part or even the whole video is 

already prefetched at the localVB. The amount of 

prefetched segments is mainly determined by the strength of 

the social activities. And the prefetching from VC to 

subVC only refers to the “linking” action, so there is only 

file locating and linking operations with tiny delays; the 

prefetching from subVC to localVB also depends on the 

strength of the social activities, but will also consider the 

wireless link status. 

-------------------------------------------------------------------------  

Algorithm 1 matching algorithm between BW and Segments 

-------------------------------------------------------------------------  

i=0 

BW0  = RBL 

Transmit BL0 

Monitor BW 0 
practical 

repeat 

Sleep for Twin 

Obtain pi , RT Ti, SI N Ri etc., from client’s report 

i+1 i+1    =  BWi             ) 

k=0 

BWEL =0 
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repeat 

k++ 

if k >= j break 

BWEL =BWEL + RELk 

until BWEL >= BW i+1 
estimate – RBL 

Transmit BLi+1 and ELi+1
1
,ELi+1

2
,…,ELi+1

k-1 

Monitor BWi+1
practical

 

i++ 

until All video segments are transmitted 

------------------------------------------------------------------------- 

We classify the social activities in current popular SNSs 

into three kinds, regarding the impact of the activities and 

the potential reacting priority from the point of view of the 

recipient: 

(1)Subscription: Like the popular RSS services, an user 

can subscribe to a particular video publisher or a special 

video collection service based on his/her interests. This 

interest-driven connectivity between the subscriber and the 

video publisher is considered as “median”, because the 

subscriber may not always watch all subscribed videos. 

(2)Direct  recommendation: In SNSs, an user directly 

recommend a video to particular friend(s) with a short 

message. The recipients of the message may watch it with 

very high probability. This is considered as “strong”. 

(3)Public  sharing: Each user in SNSs has a timeline-based 

of activity stream, which shows his/her recent activities. The 

activity of a user watching or sharing a video can be seen by 

his/her friends (or followers). We consider this public 

sharing with the “weak” connectivity among users, because 

not many people may watch the video that one has seen 

without direct recommendation. 

B. Prefetching Levels 

Different strengths of the social activities indicate different 

levels of probability that a video will be soon watched by 

the recipient. Correspondingly we also define three 

prefetching levels regarding the social activities of mobile 

users: 

(1)Parts: Because the videos that published by 

subscriptions may be watched by the subscribers with a not 

high probability, we propose to only push a part of BL and 

ELs segments, for example, the first 10% segments. 

(2)All: The video shared by the direct  recommendations 

will be watched with a high probability, so we propose 

to prefetch the BL and all ELs, in order to let the 

recipient(s) directly watch the video with a good quality, 

without any buffering. 

(3)Little: The public  sharing  has a weak connectivity 

among users, so the probability that a user’s friends 

(followers) watch the video that the user has watched or 

shared is low. We propose to only prefetch the BL segment 

of the first time window in the beginning to those who 

have seen his/her activity in the stream. 

The prefetching happens among subVBs and the 

VB, also more importantly, will be performed from the 

subVB to localVB of the mobile device depending on the 

link quality. If a mobile user is covered by Wi-Fi access, 

due to Wi-Fi’s capable link and low price (or mostly for 

free), subVC can push as much as possible in most cases. 

However if it is with a 3G/4G connection, which charges a 

lot and suffers limited bandwidth, we propose to downgrade 

the prefetching level to save energy and cost as listed in 

Table. 1, but users can still benefit from the prefetching 

effectively. Note that some energy prediction methods can 

be deployed in order to actively decide whether current 

battery status is suitable for “parts” or “little” [39]. If a 

user, A, gets the direct recommendation of a video from 

another user, B, A’s subVC will immediately prefetch the 

video either from B’s subVB, or from the VB (or 

tempVB) at the level of “all”, if A is with Wi-Fi access. 

However if user A is connected to 3G/4G link, we will 

selectively prefetch a part of the video segment to A’s local 

storage at the level of “parts”. Note that the subscribed 

videos will be not prefetched when user A is at 3G/4G 

connection, as it is downgraded from “little” to none. 

A better extension of the prefetching strategy by 

social activities can be designed by an self-updating 

mechanism from the user’s hitting history in an 

evolutionary manner. This learning-based prefetching is 

out of the scope of this paper, and will be explored as our 

future work. 

Table 1: Social  activities and background pushing strategies 

 

VI. VI D E O STO R AG E A N D ST R E A M I N G FL OW 

BY AMOV A N D EMO S 

The two parts, AMoV and EMoS, in AMES-Cloud 

framework have tight connections and will together service 

the video streaming and sharing: they both rely on the cloud 

computing platform and are carried out by the private 

agencies of users; while prefetching in EMoS, the AMoV 

will still monitor and improve the transmission considering 

the link status; with a certain amount of prefetched 

segments by EMoS, AMoV can offer better video quality. 

With the efforts of AMoV and EMoS, we 

illustrate the flow chart of how a video will be streamed 

in Fig. 5. Note that in order to exchange the videos among 

the localVBs, subVBs, tempVB and the VB, a video map 

(VMap) is used to indicate the required segments. 
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Fig. 5: Working flow of video streaming in the subVC and 

VC of AMES-Cloud framework. 

Once a mobile user starts to watch a video by a link, the 

localVB will first be checked whether there is any 

prefetched segments of the video so that it can directly 

start. If there is none or just some parts, the client will 

report a corresponding VMap to its subVC. if the subVC 

has prefetched parts in subVB, the subVC will initiate the 

segment transmission. But if there is also none in the 

subVB, the tempVB and VB in the center VC will be 

checked. For a non-existing video in AMES-Cloud, the 

collector in VC will immediately fetch it from external 

video providers via the link; after re-encoding the video 

into SVC format, taking a bit longer delay, the subVC 

will transfer to the mobile user. 

Also in AMES-Cloud, if a video is shared 

among the subVCs at a certain frequency threshold (e.g., 

10 times per day), it will be uploaded to the tempVB of the 

VC; and if it is further shared at a much higher frequency 

(e.g., 100 times per day), it will be stored with a longer 

lifetime in the VB. In such a manner, which is quite 

similar to the leveled CPU cache, the subVB and VB can 

always store fresh and popular videos in order to increase 

the probability of re-usage. 

VII. IM P L E M E N TAT I O N A N D EVA L UATI O N 

We evaluate the performance of the AMES-Cloud 

framework by a prototype implementation. We choose the 

U-cloud server (premium) in the cloud computing service 

offered by Korean Telecom, and utilize the virtual server 

with 6 virtual CPU cores (2.66GHz) and 32GB memory, 

which is fast enough for encoding 480P (480 by 720) 

video with H.264 SVC format in 30 fps at real time [9]. 

In the cloud, we deploy our server application based on 

Java, including one main program handling all tasks of the 

whole VC, while the program dynamically initializes, 

maintains and terminates instances of another small Java 

application as private agents for all active users. We 

implement the mobile client at a mobile phone, Samsung 

Galaxy II, with android system version 4.0. The mobile 

data service is offered by LG U+ LTE network, while in 

some uncovered area the 3G network is used. Note that we 

still use “3G” to indicate the general cellular network. We 

test in the downtown area, so the practical bandwidth of the 

mobile link is not as high as we expected, but this won’t 

impact our experiment results. 

The test video is the Tomb Raider 2012 Trailer in 

H.264 format with 480P resolution downloaded from 

YouTube. Its size is 13.849 Mbytes and with a duration of 

180 seconds. We first decode it by the x264 decoder into 

the YUV format, and re-encode it by the H.264 SVC 

encoder, the Joint Scalable Video Model (JSVM) software 

of version 9.1 [40]. We just use default settings for the 

decoding and encoding, and do the H.264 SVC encoding at 

the virtual server in the cloud. 

We split the video into segments by 1 second to 

5 seconds, that is to vary Twin with values 1s, 2s, 3s, 4s 

and 

 

5s. By JSVM, besides the base layer, we further make five 

temporal layers (1.875, 3.75, 7.5, 15, and 15 fps), two 

spatial layers (240 by 360 and 120 by 180) and two more 

quality layer (low and high), referring to [12] and [40]. Thus 

we define the best resolution configuration as “1+5+2+2”. 

And we also test different resolution configurations, 

including “1+1+1+1”, “1+2+2+2”, “1+3+2+2” and 

“1+4+2+2”. 

A. Adaptive Video Streaming based on SVC 

 

Fig. 6.    Relative errors between predicted bandwidth and 

practical bandwidth (percentage) 

Firstly we examine whether there is a deep relationship 

between the measured bandwidth of last time window and 

the practical bandwidth of next time window (goodput 

by Kbps). We test the video streaming service via 

cellular link, and move the device around in the building to 

try to change the signal quality. Note that all tests are ran 

five times. The collected the relative errors for the 

predicted bandwidth to the practical bandwidth for every 

time window, calculated by , are 

shown in Fig. 6, where the bar indicates the 25% and 75% 

quartiles, and the whiskers indicate the 5% and 95% 

percentiles. When Twin is 1 second or 2 seconds, the 

predicted bandwidth is very near to the practical one with 

around 10% relative error, but large values of Twin have 

relatively poor prediction accuracy, which reflects the 

similar results [37]. So we suggest a short Twin of 2 or 3 

seconds for accurate prediction in practical designs. 

B. Video Streaming in subVC and VC 

We evaluate how H.264 SVC works in AMES-Cloud 

framework regarding the above mentioned SVC resolution 

configurations. As shown in Fig. 7(a), because of the 

strong computational capacity by the cloud computing, the 

encoding speed is fast. The best resolution configuration 

“1+5+2+2” with 5 second temporal segmentation scheme 

requires about 560 ms for encoding. For shorter intervals 

of Twin , the encoding delay is very small under 50 ms. 

Because more ELs induce higher overhead due to 

the duplicated I-frames, we test the overhead, which is 

calculated by the ratio of the total size of the video 

segments after SVC encoding to the size of only the BL. As 

shown in Fig. 7(b), the resolution scheme of “1+1+1+1” has 

a low overhead around below 10%, and “1+2+2+2” with 

two ELs for each scalability feature has about 17% 
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overhead, which is acceptable. However higher resolution 

like “1+4+2+2” 

 

(a) Delay of difference SVC resolution schemes in the 

Cloud 

 

(b) Overhead of different SVC resolutions schemes in the 

Cloud 

Fig. 7: Evaluation of SVC Resolution Schemes 

has 61% overhead, and “1+5+2+2” has even 120% 

overhead, which is not efficient. Overall, an SVC stream 

should not contain too many enhance layers for extremely 

high scalability, which may practically bring too much 

overhead. 

C. Prefetching Delays 

In ESoV, video segments can be prefetched among VB, 

tempVB, and localVBs of the mobile users, based on their 

activities in SNSs. we evaluate the required delays for 

different levels of prefetching as shown in Table. 3. We 

here use the normal resolution configuration of 

“1+2+2+2” with 2 second temporal segmentation by 

default (the same in following tests). We also set the 

sharing length of “little” as only the first 5 seconds of the 

BL and ELs, that of “parts” as the first 15 seconds of the 

BL and ELs, and that of “all” as all BL and ELs 

segments. 

Table 2: Delays prefetching sharing for various levels

 

We can see that prefetching supported by the cloud 

computing is significantly fast. When prefetching via 

wireless links, it takes several seconds. However it is 

obvious that in most cases [26] [38] a recipient of the 

video sharing may not watch immediately after the original 

sharing behavior, that is normal users have significant 

access delay gaps, so this prefetching transmission delay 

won’t impact user’s experience at all, but will bring “non-

buffering” experience in fact when the user clicks to watch 

at a later time. 

D. Watching Delay 

We test how long one user has to wait from the moment that 

one clicks the video in the mobile device to the moment 

that the first streaming segment arrives, which is called as 

“click-to-play” delay. As shown in Fig. 8, if the video has 

been cached in localVB, the video can be displayed nearly 

immediately with ignorable delay. When we watch video 

which is fetched from the subVC or the VC, it generally 

takes no more than 1 second to start. However if the user 

accesses to AMES-Cloud service via the cellular link, he 

will still suffer a bit longer delay (around 1s) due to the 

larger RTT of transmission via the cellular link. 

For the cases to fetch videos which are not in 

the AMES-Cloud (but in our server at lab), the delay is 

a bit higher. This is mainly due to the fetching delay via 

the link from our server at lab to the cloud data center, as 

well as the encoding delay. In practical, there are be 

optimized links in the Internet backbone among video 

providers and cloud providers, and even recent video 

providers are just using cloud storage and computing 

service. Therefore this delay can be significantly reduced 

in practice. Also this won’t happen frequently, since most 

of the popular videos will be already prepared in the 

AMES-Cloud. 

VIII. CO N C L U S I O N 

In this paper, we discussed our proposal of an adaptive 

mobile video streaming and sharing framework, called 

AMES-Cloud, which efficiently stores videos in the clouds 

(VC), and utilizes cloud computing to construct private 

agent (subVC) for each mobile user to try to offer “non-

terminating” video streaming adapting to the fluctuation of  
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Fig. 8: Average Click-to-Play delay for Various Casess 

link quality based on the Scalable Video Coding technique. 

Also AMES-Cloud can further seek to provide “non- 

buffering” experience of video streaming by background 

pushing functions among the VB, subVBs and localVB of 

mobile users. We evaluated the AMES-Cloud by prototype 

implementation and shows that the cloud computing 

technique brings significant improvement on the adaptivity 

of the mobile streaming. 

The focus of this paper is to verify how cloud 

computing can improve the transmission adaptability and 

prefetching for mobile users. We ignored the cost of 

encoding workload in the cloud while implementing the 

prototype. As one important future work, we will carry out 

large-scale implementation and with serious consideration 

on energy and price cost. In the future, we will also try 

to improve the SNS-based prefetching, and security issues 

in the AMES-Cloud. 
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