
IJSRD - International Journal for Scientific Research & Development| Vol. 2, Issue 02, 2014 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 199

Indexing Genome with the External Construction of Compressed Suffix

Tree using LCP Array

Vijay Kumar Vishwakarma
1

1
Computer Science and Engineering

Department

1
AKS University, Satna-485001 Madhya Pradesh, India

Abstract---This paper proposes the genome indexing

algorithm, which depends upon compressed form of suffix

trees, in which every node has four parts; suffix array

number, suffix start number, LCP count, and a pointer to

another node. The proposed algorithm does not use the

whole suffix array, it just takes some necessary information

like LCP of two suffix array, compare them and suffix start

number, to align the suffix to proper position and suffix

array number to distinguish among all the partitions. The

use of compressed suffix array minimizes the number of

trees, eventually; it also minimizes the random access to

input data, as it creates the compressed suffix tree for two

suffix arrays using pairwise sorting, sequentially.

Keywords: genome indexing, suffix tree, DNA indexing

I. INTRODUCTION

Genome word came from the words “Gene” and

“Chromosome”. It contains the hereditary information of an

organism. A genome is an organism’s complete set of DNA,

including all of its genes. Each genome contains all of the

information needed to build and maintain that organism.

There are 4 nucleotides in a Genome Sequence; Adenine

(A), Cytosine (C), Guanine (G), and Thymine (T).

All four nucleotides or DNA symbol are arranged

in a unique manner for 1000 symbols. We will use this

property to differentiate the suffix trees and suffix arrays of

different partitions.

Genome indexing is a technique used to access the

DNA string or Genome sequence and extract that hereditary

information. An index is a data structure methodology that

improves the speed of data retrieval operations at the cost of

slower writes and increased storage space. Indexing can be

created using suffix tree data structure, provides the basis

for both rapid random lookups and efficient access of

ordered records.

All hierarchical data structure includes indexing

technology that enables sub-linear time lookup to improve

performance, as linear search is inefficient for large datasets.

Indexing very large datasets is a tedious task, actually done

by automated systems. It is multi-level process, like the

cleaning of genomic sequence, partitioning of input datasets,

which is larger than main memory, and organizing the data

in a data structure.

Suffix tree is a well suited data structure, which can

index the genome, efficiently. It builds the tree in linear time

and searches the string in linear time. The existing methods

like Trellis [1] and DiGeST [2] can index the genomic data

up to 3GB. We need a scalable suffix tree algorithm that

index the genome further 3 GB.

II. BACKGROUND

In computer science, a suffix tree (also called PAT tree or,

in an earlier form, position tree) [3] is a data structure that

presents the suffixes of a given string in a way that allows

for a particularly fast implementation of many important

string operations.

The suffix tree for a string S is a tree whose edges are

labeled with strings, such that each suffix of the S

corresponds to exactly one path from the tree's root to a leaf.

It is thus a radix tree (more specifically, a Patricia tree) [4]

for the suffixes of S. The suffix tree for the string S of

length n is defined as a tree such that:

1) The paths from the root to the leaves have a one-to-one

relationship with the suffixes of S

2) Edges spell non-empty strings

3) All internal nodes (except perhaps the root) have at

least two children.

Since such a tree does not exist for all strings, S is padded

with a terminal symbol not seen in the string (usually

denoted $). This ensures that no suffix is a prefix of another,

and that there will be n leaf nodes, one for each of the n

suffixes of S. Since all internal non-root nodes are

branching, there can be at most n − 1 such nodes, and

n + (n − 1) + 1 = 2n nodes in total (n leaves, n − 1 internal

nodes, 1 root).

Fig. 1: Suffix tree and suffix array

 Compressed suffix tree A.

Compressed suffix trees [5] can be implemented in O(n) bits

by using compressed suffix arrays and the techniques for

compact representation of Patricia tries. The compressed

suffix tree occupies space proportional to the text size, i.e.

O(n log | Σ |) bits, and supports all typical suffix tree

operations with at most log N factor slowdown.

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Suffix_%28computer_science%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/wiki/Radix_tree
http://en.wikipedia.org/wiki/Patricia_tree

Indexing Genome with the External Construction of Compressed Suffix Tree using LCP Array

 (IJSRD/Vol. 2/Issue 02/2014/054)

 All rights reserved by www.ijsrd.com 200

Fig. 2: Compressed Suffix tree

 LCP array B.

The LCP-array [6] stores the lengths of the longest common

prefixes of lexicographically adjacent suffixes, and it can be

computed in linear time. We have modified the LCP array

according to our algorithm and store some additional

information; suffix start number with LCP values of

respective suffixes. Suffix array with LCP array shown in

figure 3.

 Problem definition C.

Given a string X = X1, X2…XN-1 to be a sequence of N

symbols. The first N – 1 symbols are over a finite alphabet

Σ, Xi ϵ Σ (0 ≤ i < N − 1). The last symbol XN-1 is unique and

not in Σ (called as string terminals).

Given a genome sequence of length N, we have to minimize

the input output performance by reducing the merging time

of suffix trees.

 Proposed method D.

The proposed algorithm works in three steps:

1) Input Preprocessing

In this step, we encode the input string and make partition,

accordingly: A-00, C-01, G-10, T-11.

For example, human genome of 3GB, by encoding we can

compress the data to (3*2
30

)/4 = 768 MB, which can now

process in main memory. The input string X of size N into k

partitions, such that k=2r, where r=N/M, r should be at least

2. For partitioning, we are using existing Larsson’s

algorithm, which uses quick sort with partition strategy.

Nesper Larsson [7] develops this algorithm for the

partitioning and sorting according to lexicographical order

[8].

2) In-memory lexicographical sorting

In this step we generate suffix arrays for each pair of

partitions. We compute the LCP between two suffixes.

Then, sort them according to lexicographical order. A

lexicographical order is the alphabetical order as in a

dictionary. We put LCP value and starting index of suffix in

the suffix array, which is to be used in merging those suffix

arrays as compressed suffix tree (CST). We use LCP

information for pairwise sorting [9] of two suffix arrays. For

in-memory sorting we use Larsson’s quicksort algorithm

which divides and sorting lexicographically.

Fig. 3: Suffix arrays and LCP array

3) Pairwise sorting and merging

At the end of sorting step, we have on disk k suffix arrays

for k partitions (of total size N). Then we have to create a

compressed suffix tree for each pair of suffix arrays, by

comparing their LCP value. Let there be two suffix arrays;

A and B. If LCP of A is less than or equal to LCP of B, then

put the regarding suffix into the output buffer. Continue the

process for all pairs of suffix arrays. There will be k-

1compressed suffix tree for k suffix arrays. We use 2pmms

algorithm [10] to merge all the suffix arrays. Note the

lexicographical order must be maintained.

Fig. 4: Node of Compressed suffix tree

Create k number of input buffers for k number of partitions

and use the remaining amount of main memory as output

buffer. Using two phase multi-way merge sort for external

memory, then read input block from two suffix arrays (LCP

values) and compare them, if LCP of SAx is smaller or equal

to SAy then, we write SAN(suffix array number), SSN(

suffix start number), and LCP (longest common prefix)

value to the output buffer as a node. If the output buffer is

full then, we read the output buffer and write all the nodes to

the secondary memory in a file, where all nodes of the

compressed suffix tree exists.

Fig. 5: Flow of the proposed algorithm

Indexing Genome with the External Construction of Compressed Suffix Tree using LCP Array

 (IJSRD/Vol. 2/Issue 02/2014/054)

 All rights reserved by www.ijsrd.com 201

Using this approach we reduced the number of suffix trees

and create the compressed suffix tree in sequential order, so

that searching will takes place in sequential order. There is

no random access to the input string. So, we can say that

100 percent of random access is removed.

Fig. 6: Initial empty compressed suffix tree

Above Figure 6 shows the empty suffix tree, we have to

compare the LCP(A[0]) and LCP(B[0]), LCP(A[0]) is equal

to LCP(B[0]), then insert the NODE regarding LCP(A[0])

with relevant information like suffix array number, suffix

start number, LCP value of corresponding suffix. Below

Figure 7 shows the suffix tree after insertion of

NODE(A,5,0). The NODE(A,5,0) is linked to the root of the

suffix tree, which was NULL (in previous Figure 6), after

the insertion of NODE(A,5,0) the pointer of suffix array A

will be incremented and now compare LCP(A[1]) and

LCP(B[0]).

Fig. 7: Insertion of NODE(A,5,0)

Similarly, compare the LCPs values of LCP array [6] A and

B, and whichever is smaller or equal than insert the node in

suffix tree, rewardingly, give priority to former suffix array

(here suffix array A) if the LCP values of both the suffix

arrays are equal. After inserting all nodes into the suffix

tree, will be shown in Figure 8. At the end of merging the

nodes of both the suffix array, we check the output buffer is

full or not. If full, then, we write the nodes of output buffer

to secondary memory, otherwise continue the merging

process with next suffix arrays. (E.g. BC, then CD and so

on).

Fig. 8: Final compressed suffix tree after inserting all nodes

Similarly, create the compressed suffix tree for BC,

CD and so on, sequentially. We have collection of nodes in

the output buffer, if the output buffer is full, then we will

empty it to secondary memory by writing all the nodes. In

this way, we have all the nodes of the compressed suffix tree

in a file, which has information about all the connected

nodes. All files are linked with each other by the tail

(t<1000), the tail is the prefix of next partition, which is

attached to the previous partition for differentiating the

partition and its suffix arrays.

III. EXPERIMENTAL RESULTS

The simulation has been performed on Ubuntu Linux 11.10,

with 2 GB RAM, 4MB L2 cache, Intel i3 core processor (4

CPU) of 2.93 GHz. Developed in c++ (gcc compiler) and

executed in TPIE environment.

Algorithm/Dataset 250 MB 500 MB 3000 MB

Running time in minutes

Trellis 107 202 1260

DiGeST 71 126 780

Proposed 9 28 244

Table. 1: Running time of different algorithm

The reason of running time of proposed algorithm

is; first, the input data is encoded and compressed, and

hence, can process more data in main memory. Compressed

data lead to less number of partitions and less number of

suffix arrays, by which LCP array is created with useful and

relevant information. Second, the input data are accessed,

sequentially and while merging two suffix arrays as one

compressed suffix tree is also in sequential order. Thus,

there is no random access to the input data. Finally, creating

compressed suffix tree is an advantage of running time.

Fig. 9: Comparison among running time of algorithms (Bar

chart)

Fig. 9: Comparison among running time of algorithms (Line

chart)

Indexing Genome with the External Construction of Compressed Suffix Tree using LCP Array

 (IJSRD/Vol. 2/Issue 02/2014/054)

 All rights reserved by www.ijsrd.com 202

By seeing the results above, we can say that the

proposed algorithm is much better than that of Trellis and

DiGeST algorithms, in terms of time complexity, space

complexity and I/O complexity.

The advantage of using a compressed suffix tree is

that we can save secondary memory space for the number of

generating trees, and one more advantage is that the use of

suffix link, efficiently, which makes all the nodes and

compressed suffix tree connected and hence, the search time

of any gene or DNA word, will be easier and faster. The use

of suffix link with a compressed suffix tree is efficiently

minimized the random access of input data. The whole input

data is accessed sequentially.

IV. CONCLUSION

The proposed algorithm is better in terms of time

complexity and it can scale itself to index genome further

12GB, but DiGeST algorithm is limited to scale the data up

to 12GB. So, we can say that proposed algorithm is scalable

because the algorithm performs in LCP array construction.

The algorithms perform well in practice and can be

successfully used for indexing all substrings in databases of

long strings, especially of sequenced genomes. We believe

that these algorithms are important steps towards a fully

scalable solution for constructing full-text indexes on disk

for inputs of any type and size. Once this is done, a whole

world of new possibilities will be opened, especially in the

field of biological sequence analysis.

ACKNOWLEDGEMENT

The author is grateful to Dr. Shishir Kumar and Dr. Marina

Barsky for her support and valuable suggestion.

REFERENCES

[1] Benjarath Phoophakdee and Mohammed J. Zaki,

"Genome-scale disk-based suffix tree indexing".

SIGMOD '07: Proceedings of the ACM SIGMOD

International Conference on Management of Data.

ACM. pp. 833–844, 2007.

[2] Marina Barsky, Ulrike Stege, Alex Thomo, and Chris

Upton . "A new method for indexing genomes using on-

disk suffix trees". CIKM '08: Proceedings of the 17th

ACM Conference on Information and Knowledge

Management. ACM. pp. 649–658, 2008.

[3] http://en.wikipedia.org/wiki/Suffix_tree

[4] Donald R. Morrison, "PATRICIA – Practical Algorithm

To Retrieve Information Coded in Alphanumeric",

Journal of the ACM, Vol. 15, NO 4, pp. 514-534, 1968.

[5] Niko Välimäki, Wolfgang Gerlach, Kashyap Dixit and

Veli Mäkinen, “Compressed Suffix Tree - A Basis for

Genome-scale Sequence Analysis”. Bioinformatics,

23(5), Application note, pp 629-630, 2007.

[6] Simon Gog, Enno Ohlebusch, "Fast and Lightweight

LCP-Array Construction Algorithms", ALENEX, 2011.

[7] N.J. Larsson and K. Sadakane, "Faster suffix sorting",

Tech. Rep. LUCS-TR: 99-214 of the Dept. of Comp.

Sc., Lund University, Sweden, 1999.

[8] http://en.wikipedia.org/wiki/Lexicographical_order

[9] Md. Jahangir Alam, Muhammad Monsur Uddin,

Mohammad Shabbir Hasan, Abdullah Al Mahmood, “

Pair Wise Sorting: A New Way of Sorting”,

International Journal of Computer Science and

Information Security, Volume 8:9, pp. 116-120, 2010.

[10] Simonas Salteni, “External memory sorting”, Deptt. Of

Computer Science, Aalborg University, Denmark,

LNCS, pp 1-7, 2001.

