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Abstract---This paper proposes the genome indexing 

algorithm, which depends upon compressed form of suffix 

trees, in which every node has four parts; suffix array 

number, suffix start number, LCP count, and a pointer to 

another node. The proposed algorithm does not use the 

whole suffix array, it just takes some necessary information 

like LCP of two suffix array, compare them and suffix start 

number, to align the suffix to proper position and suffix 

array number to distinguish among all the partitions. The 

use of compressed suffix array minimizes the number of 

trees, eventually; it also minimizes the random access to 

input data, as it creates the compressed suffix tree for two 

suffix arrays using pairwise sorting, sequentially. 
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I. INTRODUCTION 

Genome word came from the words “Gene” and 

“Chromosome”. It contains the hereditary information of an 

organism. A genome is an organism’s complete set of DNA, 

including all of its genes. Each genome contains all of the 

information needed to build and maintain that organism. 

There are 4 nucleotides in a Genome Sequence; Adenine 

(A), Cytosine (C), Guanine (G), and Thymine (T). 

All four nucleotides or DNA symbol are arranged 

in a unique manner for 1000 symbols. We will use this 

property to differentiate the suffix trees and suffix arrays of 

different partitions. 

Genome indexing is a technique used to access the 

DNA string or Genome sequence and extract that hereditary 

information. An index is a data structure methodology that 

improves the speed of data retrieval operations at the cost of 

slower writes and increased storage space. Indexing can be 

created using suffix tree data structure, provides the basis 

for both rapid random lookups and efficient access of 

ordered records. 

All hierarchical data structure includes indexing 

technology that enables sub-linear time lookup to improve 

performance, as linear search is inefficient for large datasets. 

Indexing very large datasets is a tedious task, actually done 

by automated systems. It is multi-level process, like the 

cleaning of genomic sequence, partitioning of input datasets, 

which is larger than main memory, and organizing the data 

in a data structure. 

Suffix tree is a well suited data structure, which can 

index the genome, efficiently. It builds the tree in linear time 

and searches the string in linear time. The existing methods 

like Trellis [1] and DiGeST [2] can index the genomic data 

up to 3GB. We need a scalable suffix tree algorithm that 

index the genome further 3 GB. 

II. BACKGROUND 

In computer science, a suffix tree (also called PAT tree or, 

in an earlier form, position tree) [3] is a data structure that 

presents the suffixes of a given string in a way that allows 

for a particularly fast implementation of many important 

string operations. 

The suffix tree for a string S is a tree whose edges are 

labeled with strings, such that each suffix of the S 

corresponds to exactly one path from the tree's root to a leaf. 

It is thus a radix tree (more specifically, a Patricia tree) [4] 

for the suffixes of S. The suffix tree for the string S of 

length n is defined as a tree such that: 

1) The paths from the root to the leaves have a one-to-one 

relationship with the suffixes of S 

2) Edges spell non-empty strings 

3) All internal nodes (except perhaps the root) have at 

least two children. 

Since such a tree does not exist for all strings, S is padded 

with a terminal symbol not seen in the string (usually 

denoted $). This ensures that no suffix is a prefix of another, 

and that there will be n leaf nodes, one for each of the n 

suffixes of S. Since all internal non-root nodes are 

branching, there can be at most n − 1 such nodes, and 

n + (n − 1) + 1 = 2n nodes in total (n leaves, n − 1 internal 

nodes, 1 root). 

 

Fig. 1: Suffix tree and suffix array 

 Compressed suffix tree A.

Compressed suffix trees [5] can be implemented in O(n) bits 

by using compressed suffix arrays and the techniques for 

compact representation of Patricia tries. The compressed 

suffix tree occupies space proportional to the text size, i.e. 

O(n log | Σ |) bits, and supports all typical suffix tree 

operations with at most log N factor slowdown. 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Suffix_%28computer_science%29
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/Tree_%28data_structure%29
http://en.wikipedia.org/wiki/Radix_tree
http://en.wikipedia.org/wiki/Patricia_tree
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Fig. 2: Compressed Suffix tree 

 LCP array B.

The LCP-array [6] stores the lengths of the longest common 

prefixes of lexicographically adjacent suffixes, and it can be 

computed in linear time. We have modified the LCP array 

according to our algorithm and store some additional 

information; suffix start number with LCP values of 

respective suffixes. Suffix array with LCP array shown in 

figure 3. 

 Problem definition C.

Given a string X = X1, X2…XN-1 to be a sequence of N 

symbols. The first N – 1 symbols are over a finite alphabet 

Σ, Xi ϵ Σ (0 ≤ i < N − 1). The last symbol XN-1 is unique and 

not in Σ (called as string terminals). 

Given a genome sequence of length N, we have to minimize 

the input output performance by reducing the merging time 

of suffix trees. 

 Proposed method D.

The proposed algorithm works in three steps: 

1) Input Preprocessing 

In this step, we encode the input string and make partition, 

accordingly: A-00, C-01, G-10, T-11. 

For example, human genome of 3GB, by encoding we can 

compress the data to (3*2
30

)/4 = 768 MB, which can now 

process in main memory. The input string X of size N into k 

partitions, such that k=2r, where r=N/M, r should be at least 

2. For partitioning, we are using existing Larsson’s 

algorithm, which uses quick sort with partition strategy. 

Nesper Larsson [7] develops this algorithm for the 

partitioning and sorting according to lexicographical order 

[8]. 

2) In-memory lexicographical sorting 

In this step we generate suffix arrays for each pair of 

partitions. We compute the LCP between two suffixes. 

Then, sort them according to lexicographical order. A 

lexicographical order is the alphabetical order as in a 

dictionary. We put LCP value and starting index of suffix in 

the suffix array, which is to be used in merging those suffix 

arrays as compressed suffix tree (CST). We use LCP 

information for pairwise sorting [9] of two suffix arrays. For 

in-memory sorting we use Larsson’s quicksort algorithm 

which divides and sorting lexicographically. 

 

 

Fig. 3:  Suffix arrays and LCP array 

3) Pairwise sorting and merging 

At the end of sorting step, we have on disk k suffix arrays 

for k partitions (of total size N). Then we have to create a 

compressed suffix tree for each pair of suffix arrays, by 

comparing their LCP value. Let there be two suffix arrays; 

A and B. If LCP of A is less than or equal to LCP of B, then 

put the regarding suffix into the output buffer. Continue the 

process for all pairs of suffix arrays. There will be k-

1compressed suffix tree for k suffix arrays. We use 2pmms 

algorithm [10] to merge all the suffix arrays. Note the 

lexicographical order must be maintained. 

 

Fig. 4: Node of Compressed suffix tree 

Create k number of input buffers for k number of partitions 

and use the remaining amount of main memory as output 

buffer. Using two phase multi-way merge sort for external 

memory, then read input block from two suffix arrays (LCP 

values) and compare them, if LCP of SAx is smaller or equal 

to SAy then, we write SAN(suffix array number), SSN( 

suffix start number), and LCP (longest common prefix) 

value to the output buffer as a node. If the output buffer is 

full then, we read the output buffer and write all the nodes to 

the secondary memory in a file, where all nodes of the 

compressed suffix tree exists. 

 

Fig. 5: Flow of the proposed algorithm 
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Using this approach we reduced the number of suffix trees 

and create the compressed suffix tree in sequential order, so 

that searching will takes place in sequential order. There is 

no random access to the input string. So, we can say that 

100 percent of random access is removed. 

 
Fig.  6: Initial empty compressed suffix tree 

Above Figure 6 shows the empty suffix tree, we have to 

compare the LCP(A[0]) and LCP(B[0]), LCP(A[0]) is equal 

to LCP(B[0]), then insert the NODE regarding LCP(A[0]) 

with relevant information like suffix array number, suffix 

start number, LCP value of corresponding suffix. Below 

Figure 7 shows the suffix tree after insertion of 

NODE(A,5,0). The NODE(A,5,0) is linked to the root of the 

suffix tree, which was NULL (in previous Figure 6), after 

the insertion of NODE(A,5,0) the pointer of suffix array A 

will be incremented and now compare  LCP(A[1]) and 

LCP(B[0]). 

 
Fig. 7: Insertion of NODE(A,5,0) 

Similarly, compare the LCPs values of LCP array [6] A and 

B, and whichever is smaller or equal than insert the node in 

suffix tree, rewardingly, give priority to former suffix array 

(here suffix array A) if the LCP values of both the suffix 

arrays are equal. After inserting all nodes into the suffix 

tree, will be shown in Figure 8. At the end of merging the 

nodes of both the suffix array, we check the output buffer is 

full or not. If full, then, we write the nodes of output buffer 

to secondary memory, otherwise continue the merging 

process with next suffix arrays. (E.g. BC, then CD and so 

on). 

 

Fig. 8:  Final compressed suffix tree after inserting all nodes 

Similarly, create the compressed suffix tree for BC, 

CD and so on, sequentially. We have collection of nodes in 

the output buffer, if the output buffer is full, then we will 

empty it to secondary memory by writing all the nodes. In 

this way, we have all the nodes of the compressed suffix tree 

in a file, which has information about all the connected 

nodes. All files are linked with each other by the tail 

(t<1000), the tail is the prefix of next partition, which is 

attached to the previous partition for differentiating the 

partition and its suffix arrays. 

III. EXPERIMENTAL RESULTS 

The simulation has been performed on Ubuntu Linux 11.10, 

with 2 GB RAM, 4MB L2 cache, Intel i3 core processor (4 

CPU) of 2.93 GHz. Developed in c++ (gcc compiler) and 

executed in TPIE environment. 

Algorithm/Dataset 250 MB 500 MB 3000 MB 

 
Running time in minutes 

Trellis 107 202 1260 

DiGeST 71 126 780 

Proposed 9 28 244 

Table. 1: Running time of different algorithm 

The reason of running time of proposed algorithm 

is; first, the input data is encoded and compressed, and 

hence, can process more data in main memory. Compressed 

data lead to less number of partitions and less number of 

suffix arrays, by which LCP array is created with useful and 

relevant information. Second, the input data are accessed, 

sequentially and while merging two suffix arrays as one 

compressed suffix tree is also in sequential order. Thus, 

there is no random access to the input data. Finally, creating 

compressed suffix tree is an advantage of running time. 

 
Fig.  9: Comparison among running time of algorithms (Bar 

chart) 

 

Fig. 9: Comparison among running time of algorithms (Line 

chart) 
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By seeing the results above, we can say that the 

proposed algorithm is much better than that of Trellis and 

DiGeST algorithms, in terms of time complexity, space 

complexity and I/O complexity. 

The advantage of using a compressed suffix tree is 

that we can save secondary memory space for the number of 

generating trees, and one more advantage is that the use of 

suffix link, efficiently, which makes all the nodes and 

compressed suffix tree connected and hence, the search time 

of any gene or DNA word, will be easier and faster. The use 

of suffix link with a compressed suffix tree is efficiently 

minimized the random access of input data. The whole input 

data is accessed sequentially. 

IV. CONCLUSION 

The proposed algorithm is better in terms of time 

complexity and it can scale itself to index genome further 

12GB, but DiGeST algorithm is limited to scale the data up 

to 12GB. So, we can say that proposed algorithm is scalable 

because the algorithm performs in LCP array construction. 

The algorithms perform well in practice and can be 

successfully used for indexing all substrings in databases of 

long strings, especially of sequenced genomes. We believe 

that these algorithms are important steps towards a fully 

scalable solution for constructing full-text indexes on disk 

for inputs of any type and size. Once this is done, a whole 

world of new possibilities will be opened, especially in the 

field of biological sequence analysis. 
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