Traffic Characteristics and Control at Savala Junction-Visnagar City

Vikas V. Oza¹ Harsh D. Patel² Ramji K. Thakor³ Prof. Manjurali I. Balya⁴ Prof. Vikrant A. Patel⁵
¹,²,³,⁴,⁵Sankalchand Patel College of Engineering, Visnagar, Gujarat, India

Abstract— Now a day, the traffic congestion is the major problems of our country India. The urbanization of Indian cities increasing and also the vehicle registration of that cities are increasing which is results in increase of the traffic congestion, For the present study, Savala Junction of Visnagar city is selected as a case study which is facing major problems viz. traffic due to uneven vehicle flow, uneven parking, no traffic signals, encroachments etc. and due to this problems time consumption of road users and accidental rate is high. The analysis of the present study junction is carried out from the collected data of videography. The aim of the study is to control the traffic congestion at the Savala junction and to provide the safety to the peoples.

Key words: Urbanization, Traffic Congestion, Savala Junction

I. INTRODUCTION

Presently the population of India increasing day by day. Current population of India with 1.22 billion people is the second most populous country in the world, while china is on the top with over 1.35 billion people. Past record show that India represents almost 17.31% of the world's population, which means one out of six people on this planet live in India. With the populations growth rates at 1.58%, India his predicted to have more than 1.53 billion people by the end of 2030.

Visnagar is the one of the industrial city of Mehsana district of Gujarat State in India. The population of the city according to the census of 2011 is 63,072 which facing high traffic problem in CBD area. In Visnagar, Savala junction is the point which facing much traffic congestion, encroachment nuisance, congestion by Auto rickshaw etc. This is the location at which traffic from M.N. College road, Market road, Mehsana road, Ahmedabad road are meet.

The present research paper shows the existing problems at the junction faced by the peoples. The videography survey of morning peak (10:00 am to 12:00 pm) was carried out at this junction. The analysis of conducting traffic studies –Volume count direction wise and Mode wise has also carried out at Savala Junction. Intersection capacity, signal design, flyover traffic movement and pedestrian study are not included in present study.

II. PROBLEM SUMMARY

A. Reasons for Congestion

- Migration rate is high.
- Rapid and uncontrolled construction development.
- Lack of frequency of public mass transit system for the villages around Visnagar city.
- Lack of traffic controlling system and lack of management by police and other authorities.

B. Existing Problems

- Time and fuel consumption,
- Irregularity of traffic flow,
- Accident problems,
- Uneven Parking towards the road is affected to the movement of traffic. (Figure 1-2)
- Encroachment and Private Vehicles are at the side of road so Buses are stopping on the Road (Figure 3)

III. OBJECTIVES OF THE STUDY

The major objective of the present research is to reduce the congestion and to control the traffic at Savala Junction at Visnagar City. There is also another aim is to suggest remedial measures over existing traffic problems at this junction.
IV. FIELD STUDIES

To capture the traffic characteristics of Savala Junction videography survey and manual count survey are carried out.

As a result of pilot survey we found morning peak hours of the day are higher at this junction so we have collected the morning peak period for videography. There are high rise building is selected for the videography so, traffic from all the side are include in the videography. The high resolution camera is also used for clear images. The survey had started on 02-11-2014 from morning 10:00am to 12:00pm. From the videography the vehicle count has carried out from the computer with the help of our classmates. In this survey we try to collect maximum no. of samples for every 5 minute. After collecting all data the total volume at this junction and direction wise traffic has been calculated. The traffic composition with direction wise is also carried out from the collected data.

V. STUDY AREA

Visnagar city is located in Mehsana district of Gujarat state. Present population of Visnagar city as per census 2011 about 63073. In Visnagar, many Industries, good educational facilities, medical facilities, better residential & commercial centers are available. Savala junction is the entry point of migrating people from outsides Villages. So traffic problems are more. In Savala Junction, there are three direction routes are merging as form Ahmedabad side, towards Tower side and towards Bus Stop of Visnagar Side. From all these three routes Ahmedabad side traffics are more at this Junction. The study area Visnagar city and Savala Junction is shown in Fig.4 & 5.

VI. ANALYSIS AND DISCUSSION

A. General

The data collected from the videography of various vehicle types having different sizes and characteristics has been converted into a standard equivalent unit called “Passenger Car Unit” (PCU). The Passenger Car Unit (PCU) Values (Rural Roads) as suggested in the IRC: 106- 1990 “Guidelines for Capacity of Urban Roads in Plain Areas” have been adopted as given in Table-1.

<table>
<thead>
<tr>
<th>Mode</th>
<th>2W</th>
<th>3W</th>
<th>4W</th>
<th>Bus</th>
<th>LCV</th>
<th>Cycle</th>
<th>Tractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCU</td>
<td>0.5</td>
<td>1.2</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>0.4</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Table-1: Passenger car unit values as per IRC: 106-1990

B. Variation of traffic volume

1) Route: Ahmedabad - Bus depot.

In the morning peak hours, between 10:00am to 11:00pm the traffic from Ahmedabad to bus station is higher and between 11:00am to 12:00 pm, the traffic from bus stand to Ahmedabad is higher. The variation of traffic to and from Ahmedabad to Bus Stop of Visnagar is shown in Fig.6.

2) Route: Ahmedabad to Tower

The following Fig.7 represents the variation of traffic volume of route Ahmedabad to Tower and Tower to Ahmedabad. The traffic volume is high between 10:30am to 11:30am in both directions.

3) Route: Bus Depot - Tower

The Fig.8 represents the variation of traffic volume of route Bus Depot to Tower and Tower to Bus Depot. It is denoted that the traffic volume on this route is less than the other two routes.

Fig. 4: Visnagar City
(Source: Google Map)

Fig. 5: Savala Junction in Visnagar
(Source: Google Map)
C. Directional Split (%)

In this graph, the Directional Split is denoted in percentage (%) for all the routes. It is denoted that in which route how many vehicles (PCU) are passes in a particular time period.:

1) **Route: Ahmedabad - Bus Depot**

Nearly 50.44% of vehicles move on the route of Ahmedabad to Bus Depot & 49.56% of vehicles move on the route of Bus Depot to Ahmedabad. Fig.9 illustrates the directional distribution to & from Ahmedabad to Bus Stop of Visnagar.

2) **Route: Ahmedabad to Tower**

The Fig.10 shows that 46% of vehicles move on the route of Ahmedabad to Tower & 54% of vehicles move on the route of Tower to Ahmedabad.

3) **Route: Bus Depot to Tower**

Fig.11 illustrates that nearly 51% of vehicles move on the route of Tower to Bus Depot & 49% of vehicles move on the route of Bus Depot to Tower.

D. Junction Effect of all Direction Routes

These graphs are denoted that how many vehicles (PCU-%) is passes through the all routes and affected on the junction by traffic volume. Highest traffic volume on route of Tower to Ahmedabad is 23%. Lowest traffic volume on route of Bus Depot - Tower is 7%. The junction effect of all three direction routes is shown in Fig.11.

VII. PROPOSED IMPROVEMENT MEASURES

A. Identification of Issues

1) **No Signal System**

Signal system is not provided at Savala junction so that Traffic problems have been increased. By providing Traffic signals we can control Traffic problems and reduce the time consumption.

2) **Unmanageable Traffic Situation**

Any of control systems that are not implemented for controlling traffic. At presently, the auto rickshaws and jeeps are parked and stopped anywhere on the road so, the traffic are not able to managed.

3) **Encroachment of Vendors and Vegetables Hand Carts**

The vendors have been seated on the roadside and the hand carts of the fruits are standing on the side of the road. This is the major creation of the traffic at this junction. Due to this, the buses are not able to stop at the side of the bus stop because it is covered by these encroachments so buses are stopping on the road which is resulted in traffic congestion problems.

B. Remedial Measures

After identifying different issues at Savala junction, different proposals are made according to it, keeping all constraints in mind.

- The combination of Rotary and Signal is suited for current traffic operation of junction.
- By removing encroachment of vendors and fruits hand carts space on road will be increased.
- By providing sufficient space for bus stop.
- Providing proper parking for the private vehicles and rickshaws.

VIII. SUMMARY & CONCLUSION

Savala junction of Visnagar city is facing major traffic problem presently. At this junction, there are many encroachments like illegal parking of Auto rickshaws/2W/Jeeps, stopping bus on road, vendors and fruit handcarts etc.
In present study we have carried out the traffic analysis of the Savala junction and how to solve these traffic problems. From videography survey we have collected morning peak hour traffic as category wise. Junction effect from three different routes as Ahmedabad-Visnagar Bus Depot, Ahmedabad-Tower and Bus Depot-Tower have been found out from the collected data. The analysis shows that the directional distribution, traffic volume variations and junction effect are majorly on Ahmedabad-Visnagar Bus Depot route.

- The maximum traffic is occurring on Ahmedabad-Visnagar Bus Depot route as 44%.
- The minimum traffic is occurring on Visnagar Bus Depot-Tower route as 14%.

The maximum traffic variation on route of "Ahmedabad-Tower route" as 46% of vehicles move on the route of Ahmedabad to Tower & 54% of vehicles move on the route of Tower to Ahmedabad.

REFERENCES

[1] Andrea Gavulova, 2011, “Basic Concept of the technical study of the traffic control system”, in presov University of Žilina, Faculty of Civil Engineering, Department of Highway Engineering Faculty of Electrical Engineering, Department of Control and Information Systems Univerzitná 8251/1, SK-010 26 Žilina, Slovak Republic.

