Improved Version of Apriori Algorithm Using Top down Approach-II

Mr.Kailash Patidar1 Mr.Gajendra Singh2 Jatin khalse3
1Associate Professor 2Head of Department 3M.Tech Scholar
1,2,3Department of Computer Science & Engineering
1,2,3Sri Satya Sai Institute of Science & Technology, Sehore, India

Abstract— As with the advancement of the IT technologies, the amount of accumulated data is also increasing. It has resulted in large amount of data stored in databases, warehouses and other repositories. Thus the Data mining comes into picture to explore and analyze the databases to extract the interesting and previously unknown patterns and rules known as association rule mining. In data mining, Association rule mining becomes one of the important tasks of descriptive technique which can be defined as discovering meaningful patterns from large collection of data. Mining frequent item set is very fundamental part of association rule mining. As in retailer industry many transactional databases contain same set of transactions many times, to apply this thought, in this thesis present an improved Apriori algorithm that guarantees the better performance than classical Apriori algorithm.

Key words: Fundamental Components of Data Mining Technology, Apriori Algorithm, Association Rule Mining

I. INTRODUCTION

With the enhance in Information Technology, the size of the databases created by the organizations due to the accessibility of low-cost storage and the development in the data capturing technologies is also increasing. These association sectors include retail, fuel, telecommunications, utilities, manufacturing, transport, credit cards, insurance, banking and many others, extracting the valuable data, it required to explore the databases completely and efficiently. Knowledge discovery in databases (KDD) helps to identifying valuable information in such huge databases.

Data mining is the main part of KDD. Data mining normally involves four classes of task; classification, clustering, regression, and association rule learning. Data mining as a field of study involves the integration of ideas from many domains rather than a pure discipline the four main disciplines [1], which are contributing to data mining include:

- Statistics: it can make available tools for measuring the importance of the given data, estimating probabilities and many other tasks (e. g. linear regression).
- Machine learning: it provides algorithms for inducing knowledge from given data (e.g. SVM).
- Data management and databases: in view of the fact that data mining deals with huge size of data, an efficient way of accessing and maintaining data is needed.
- Artificial intelligence: it contributes to tasks involving knowledge encoding or search techniques (e.g. neural networks).

1) The Primary Methods Of Data Mining:

Data mining addresses two basic tasks: verification and discovery. The verification task seeks to confirm user’s hypotheses. While the finding task searches for unidentified knowledge hidden in the data. In general, discovery task can be further divided into two categories, which are descriptive data mining and predicative data mining.

- Descriptive data mining describes the data set in a summary manner and presents interesting general properties of the data.
- Predictive data mining constructs one or more models to be later used for predicting the behavior of future data sets.
- There are a number of algorithmic techniques existing for each data mining tasks, with features that must be weighed against data characteristics and additional business requirements. Among all the techniques, in this research, we are focusing on the association rules mining technique, which is descriptive mining technique, with transactional database system.

2) Fundamental Components Of Data Mining Technology:

It is fundamentally important to declare that the prime key to understand and realize the data mining technology is the ability to make different between data mining, operations, and techniques [2], as shown in Fig 1.

![Fig. 1: Components Of Data Mining](image)

B. Association Rule Mining:

The association rule of data mining is a elementary topic in mining of data [3]. Association rule mining discovery frequent patterns, associations, correlations, or fundamental structures along with sets of items or objects in transaction databases, relational databases, and other information repositories [4].

A lot of studies have been done in the region of association rules mining. First introduced the association rules mining in [5,6]. Many studies have been conducted to address various conceptual, implementation, and application issues relating to the association rules mining task.

The overall performance of mining association rules is determined primarily by the first step. The second step is easy. After the large itemsets are identified, the corresponding association rules can be derive in straightforward manner. Our main consideration of the thesis is First step i.e. to find the extraction of frequent itemsets [9].

All rights reserved by www.ijsrd.com | 490

C. Apriori Algorithm:

1) Introduction of Apriori Algorithm:

Apriori is a classic algorithm for learning association rules in data mining. Apriori is an influential algorithm for mining frequent itemsets for Boolean association rules [11]. The Apriori algorithm is a classical data mining method for association rule discovery typically applied to market basket data, such as the study of what products tend to be purchased together in an on-line market place (e.g. Amazon etc).

There are two properties: “all nonempty subset of a frequent itemset must also be frequent; all superset of non frequent itemset must also be non-frequent” the properties is used in Apriori algorithm to scanning the database, resulting in Boolean association rules frequent itemsets.

Specifically, Apriori uses an iterative search method layer by layer, where k-dimensional itemsets are used to explore (k-1)-dimensional itemsets. First, the set of frequent 1-dimensional itemsets is found and denoted L1. Next, L1 is used to find L2, the set of L2 frequent 2-itemsets, which is used to find L3, and so on until no more frequent k-dimensional itemsets can be found[13]. Finally, getting the rules from large set of data items. How L_i-1 is used to find L_i is consisting of two step process, join and prune actions as followed [14]:

a) The Join Step:

Join L_k-1 with itself, than combine the same extension item appeared to generate a possible candidate k-dimensional itemsets, this set of candidates is denoted C_k. C_k⊇L_k.

b) The Prune Step:

Scan the database to determine the count of each candidate in C_k. When the count is less than the minimum support count, it should be delete from the candidate itemsets.

2) Classical Apriori Algorithm:

Apriori employs an iterative approach known as a level-wise search [15], where k-itemsets are used to explore (k+1)-itemsets. First, the set of frequent 1-itemsets is found. This set is denoted L_1. L_1 is used to find L_2, the set of frequent 2-itemsets, which is used to find L_3, and so on, until no more frequent k-itemsets can be found. The finding of each L_k requires one full scan of the database. In order to find all the frequent itemsets, the algorithm adopted the recursive method. The main idea is as follows [16]:

\[
\text{L}_1 = \{\text{large 1-itemsets}\};
\]

for (k=2; \text{L}_k-1\neq \emptyset; k++)

\{
\begin{align*}
\text{C}_k &= \text{Apriori-gen (L}_k-1) ; \quad // \text{the new candidates for each transactions } t \in \text{D do } \text{scan D for counts}
\end{align*}
\}

\]

\]

return = \text{L}_k;

All nonempty subsets of a frequent itemsets must also be frequent. To reduce the size of C_k, pruning is used as follows. If any (k-1)-subset of a candidate k-itemsets is not in L_k-1, then the candidate cannot be frequent either and so can be removed from C_k. The prune step reduces the cost of calculating all the support of candidate sets by reducing the size of candidate sets, which significantly improves the performance of finding frequent itemsets.

D. Advantages of Apriori:

- Easy implementation.
- Initial Information- transaction database D and user-defined minimum support threshold Min_supp.
- Algorithm uses information from previous steps to produce the frequent itemsets [18].

E. Limitations of Apriori:

- In case of large dataset, this algorithm is not efficient [19].
- Apriori algorithm requires large no of scans of dataset [19].
- In case of large dataset, Apriori algorithm produce large number of candidate itemsets. Algorithm scan database repeatedly for searching frequent itemsets, so more time and resource are required in large number of scans so it is inefficient in large datasets [20].

II. RELATED WORK

One of the most well known and popular data mining techniques is the Association rules or frequent item sets mining algorithm. The algorithm was originally proposed by Agrawal et al. [21] [22] for market basket analysis. Because of its important applicability, many revised algorithms have been introduced since then, and Association rule mining is still a widely researched area.

Agrawal et. al. [22] developed various versions of Apriori algorithm such as Apriori, AprioriTid, and AprioriHybrid. Apriori and AprioriTid generate item sets using the large item sets found in the preceding pass, without consider the transactions.

Park. J. S et.al [23] find out that different versions of Apriori were available, the problem with Apriori was that it generates too many 2-item sets that were not frequent.

Scalability is a different important area of data mining because of its huge size. Hence, algorithms should be able to “scale up” to handle large amount of data. Eui-Hong et. al. [24] tried to create data distribution and candidate distribution scalable by Intelligent Data Distribution (IDD) algorithm and Hybrid Distribution (HD) algorithm respectively.
An further scalability study of data mining was reported by introducing a light-weight data structure called Segment Support Map (SSM) with the purpose of reduces the number of candidate item sets required for counting [25].

The problem of mining with Association rules is a natural fit. in addition Association rule mining Evolutionary algorithms were also reported that can generate association rules [26]. It allows overlapping intervals in different item sets.

III. IMPLEMENTATION OF NOVEL APPROACH

The major objective of the research is to develop and propose a new idea for mining the association rules out of transactional data set. The proposed method is based on Improved Apriori approach. The proposed method is more efficient than classical Apriori algorithm. To achieve the research objective successfully, a series of sequence progresses and analysis steps have been adopted. Figure 4.depicts the method to mine frequent itemsets from the transactional data set using the new method.

IV. IMPLEMENTATION OF IMPROVED APRIORI ALGORITHM

The improved Apriori algorithm is usually used for association mining technique by using top down approach. The top down Apriori algorithms requirements to large frequent item sets and generates frequent candidate item sets. The improved Apriori algorithm which reduce unnecessary data base scan. This algorithm is useful for large amount of item set. Therefore, improved top down algorithm uses less space, less number of iteration.

Pseudo Code:

Input: database (D), minimum support (min_sup).
Output: frequent item sets in D.

L1= frequent item set (D)
j=k; /* k is the maximum number of element in a transaction from the database*/
for k= maxlength to 1
 {
 for i=k to 2
 {
 for each transaction Ti of order i
 {
 if (Ti has repeated)
 {
 Ti.count++;
 }
 m=0;
 while (i<j-m)
 {
 if (Ti is a subset of each transaction Tj-m of order j-m)
 Ti.count++; m++; }
 If (Ti.count>=min_sup)
 Rule Ti generated
 }
 }
 }

Fig. 5: flow chart of improved Apriori algorithm

V. TESTING AND RESULT

The experiments that we have performed to evaluate the new proposal. For the estimation purpose we have conducted several experiments using the existing data set. Those experiments performed on computer with Core 2 Duo 2.00 GHZ CPU, 2.00 GB memory and hard disk 80 GB. This algorithm was developed by java language using net beans IDE 7.3.1 and for the unit of measuring the time , and no of iteration.

1) Time Comparison with No Of Transaction:

As a result of the experimental study, revealed the performance of our improved Apriori with the Classical Apriori algorithm. The run time is the time to mine the frequent itemsets. The experimental result of time is shown in Figure 5-1 reveals that the proposed scheme outperforms the Apriori approach.
Improved Apriori algorithm takes less time than the classical one.

![Fig. 5.2: Depicting Relationship of support count with time consumption](image)

VI. CONCLUSION

In this thesis, we measured the following factors for creating our new idea, which are the time and the no of iteration, these factors, are affected by the approach for finding the frequent itemsets. Work has been done to develop an algorithm which is an improvement over Apriori with using an approach of improved Apriori algorithm for a transactional database. According to our clarification, the performances of the algorithms are strongly depends on the support levels and the features of the data sets (the nature and the size of the data sets). Therefore we employed it in our scheme to guarantee the time saving and reduce the no of iteration. Thus this algorithm produces frequent itemsets completely. Thus it saves much time and considered as an efficient method as proved from the results. We can summarize the main contribution of this research as follows:

- To study and examine various existing approaches to extract frequent itemsets.
- To devised a new better scheme than classical Apriori algorithm approach for mining frequent itemsets.

A. Benefits:
- This improved Apriori algorithm suitable for long frequent item sets.
- The major advantage of this approach is, the number of database scans is greatly reduced.
- Avoiding generation of un-necessary patterns.
- Improved version of Apriori algorithm is more efficient which takes less time, less memory and high efficiency.

B. Future Trends:

There are a number of future research information based on the work presented in this thesis.

- Using constraints can further reduce the size of itemsets generated and improve mining efficiency.
- In the future we shall introduce improvement policies of accuracy and efficiency in our algorithm.
- This scheme was applied in retailer industry application, trying other industry is an interesting field for future work.

REFERENCES

[4] Jiawei Han, Micheline Kamber , Morgan Kaufmann : Data mining Concepts and Techniques , 2006.
[14] Chengyu and Xiong Ying: Research and improvement of Apriori algorithm for Rules,

