
IJSRD - International Journal for Scientific Research & Development| Vol. 1, Issue 4, 2013 | ISSN (online): 2321-0613

All rights reserved by www.ijsrd.com 862

Abstract--In today’s digital world, Data sets are increasing

exponentially. Statistical analysis using clustering in

various scientific and engineering applications become

very challenging issue for such large data set. Clustering

on huge data set and its performance are two major factors

demand for optimization. Parallelization is well-known

approach to optimize performance. It has been observed

from recent research work that GPU based parallelization

help to achieve high degree of performance. Hence, this

thesis focuses on optimizing hierarchical clustering

algorithms using parallelization. It covers implementation

of optimized algorithm on various parallel environments

using Open MP on multi-core architecture and using

CUDA on may-core architecture.

I. INTRODUCTION

Clustering is the task of grouping a set of objects in such a

way that objects in the same group (called cluster) are

more similar (in some sense or another) to each other than

to those in other groups (clusters). It is a main task of

explorative data mining, and a common technique for

statistical data analysis used in many fields, including

machine learning, pattern recognition, image analysis,

information retrieval, and bioinformatics.

A "clustering" is essentially a set of such clusters, usually

containing all objects in the data set. Additionally, it may

specify the relationship of the clusters to each other, for

example a hierarchy of clusters embedded in each other.

Clustering can be roughly distinguished in:

1) Hard clustering: each object belongs to a cluster or

not

2) Soft clustering (fuzzy clustering): each object belongs

to each cluster to a certain degree (e.g. a likelihood of

belonging to the cluster)

A. Classification of Clustering

Traditionally clustering techniques are

broadly divided in [1]:

1) Hierarchical methods

2) Partitioning Methods

3) Density Based Algorithms

4) Grid Based Clustering

B. Hierarchical Methods

Hierarchical clustering is a method of cluster

analysis which seeks to build a hierarchy of

clusters. Hierarchical clustering generally falls into

two types:

1) Agglomerative Algorithm

2) Division Algorithm

In hierarchical clustering the data are not partitioned into

a particular cluster in a single step. Instead, a series of

partitions takes place, which may run from a single

cluster containing all objects to n clusters each containing

a single object. Hierarchical Clustering is subdivided into

agglomerative methods, which proceed by series of

fusions of the n objects into groups, and divisive

methods, which separate n objects successively into finer

groupings. Hierarchical clustering may be represented by

a two dimensional diagram known as dendrogram which

illustrates the fusions or divisions made at each

successive stage of analysis.

C. Partitioning Methods

The partitioning methods generally result in a set of M

clusters, each object belonging to one cluster. Each cluster

may be represented by a centroid or a cluster

representative; this is some sort of summary description of

all the objects contained in a cluster. The precise form of

this description will depend on the type of the object

which is being clustered. In case where real-valued data is

available, the arithmetic mean of the attribute vectors for

all objects within a cluster provides an appropriate

representative; alternative types of centroid may be

required in other cases, e.g., a cluster of documents can be

represented by a list of those keywords that occur in some

minimum number of documents within a cluster. If the

number of the clusters is large, the centroids can be

further clustered to produces hierarchy within a dataset.

D. Density-Based Algorithms

Density-based algorithms are capable of discovering

clusters of arbitrary shapes. Also this provides a natural

protection against outliers. These algorithms group

objects according to specific density objective functions.

Density is usually defined as the number of objects in a

particular neighborhood of a data objects. In these

approaches a given cluster continues growing as long as

the number of objects in the neighborhood exceeds some

parameter.

E. Grid Based Clustering

These focus on spatial data i.e. the data that model the

geometric structure of objects in the space, their

relationships, properties and operations. This technique

quantizes the data set into a no. of cells and then work with

objects belonging to these cells. They do not relocate

points but ratter builds several hierarchical levels of groups

of objects. The merging of grids and consequently clusters,

does not depend on a distance measure .It is determined by

a predefined parameter.

1) Mode of Performance Optimization

Performance optimization is foremost objective when

we are performing many computations on processor.

Performance Optimization of Clustering On GPU

Vijal D. Patel1 Prof. Sumitra Menaria2
1, 2

C.S.E. Dept., Parul Institute of Engineering & Technology

 Performance Optimization of Clustering on GPU

(IJSRD/Vol. 1/Issue 4/2013/0014)

All rights reserved by www.ijsrd.com 863

So following techniques are used for performance

optimization:

1) Efficient Resources (Devices)

2) Optimized computing Algorithm

3) Best utilization of resources with less cost

 (Parallel processing)

This paper proposes a mechanism for High Performance

Computing.

II. GPU ARCHITECTURE

GPU (Graphics Processing Unit) have been of large

interest in last decade to achieve high performance

computing through massive data parallelism model. GPU

has hundreds of core processors. GPUs are designed for

graphics. GPU is used to process similar operation on

independent vertices & pixels in parallel. GPU is more

suitable for stream computations like SIMD (single

Instruction multiple data) programming model. For higher

efficiency, GPU processes many data elements in parallel

with same program module.

Last decade, to satisfy demand of high performance

computing a tremendous rise in computing power has been

observed. Although CPU has been constantly increasing

their performance, the growth has been over shadowed by

the improvement in performance of GPU. This trend has

led to draw the interest of researchers with high

computational requirements to look for GPUs as a possible

solution. This has led to the emergence of a new term

GPGPU (General Purpose computing using Graphical

Processing Units).

GPGPU is defined as General Purpose computation using

GPU and graphics API in applications other than 3D

graphics. In order to achieve higher efficiency, GPGPU is

designed as a combination between hardware components

and software that allows the use of a traditional GPU

(Graphics processor) to perform non-graphical computing

tasks with higher processing power. [2]

Fig. 1 describes GPU architecture. Each GPU has number

of Streaming Multiprocessors(SM) i.e.30 SMs and each

streaming multiprocessor has eight streaming core

processor. This architecture has characteristics to perform

same operation on collection of records (Data parallelism).

Hence, GPU uses streaming processor as core processor to

achieve massive data parallelism. Each NVIDIA GPU has

a hundreds of parallel cores and within each core has

floating point unit, logic unit (add, sub, mul), move and

compare unit, and a branch unit.

Figure (1): GPU Architecture [2]

Hence, GPU uses streaming processor as core processor to

achieve massive data parallelism. Each NVIDIA GPU has

a hundreds of parallel cores and within each core has

floating point unit, logic unit (add, sub, mul), move and

compare unit, and a branch unit.

Each core is managed by a thread manager. A thread

manager can spawn and manage hundreds of threads per

core. A very important feature is that it uses lightweight

threads that have little creation overhead and zero-

overhead scheduling. The GPU is highly parallel compute

coprocessor that has its own device memory with high

bandwidth.

III. CUDA

Compute Unified Device Architecture (CUDA) is a

Programming model and the APIs required for performing

computation tasks on NVIDIA GPUs. CUDA is a scalable

highly parallel and multithreaded API to execute a

program on any number of processor without recompiling.

CUDA allow a program written for a platform to be

executed in other platform without recompilation. CUDA

provides efficient programming environment for regular

applications. CUDA is designed to support many

programming languages as shown in Fig.2. It provides

extension to programming languages for performing

computation on NVIDIA GPUs. CUDA C is extension to

C language with CUDA API to operate on NVIDIA GPU.

It allows a programmer to write a program for one thread,

and it instantiate for multiple parallel threads.

Figure (2): CUDA Interface [2]

A. CUDA Programming Execution model

Figure (3): CUDA execution model [2]

Programming model provided for designing and executing

general purpose computation kernel on NVIDIA GPU is

named as Compute Unified Device Architecture

(CUDA).CUDA programming modal is available for most

known operating systems Windows, and Linux. CUDA

programming modal allows programmer to use GPU for

parallel programming without knowledge of graphics.

Fig.3 describes CUDA computational model to be

 Performance Optimization of Clustering on GPU

(IJSRD/Vol. 1/Issue 4/2013/0014)

All rights reserved by www.ijsrd.com 864

executed on CPU and GPU both. A CUDA program is

sequential host program and one or many kernel code as

shown in Fig.3.Serial code will be executed by a CPU

thread, and Kernel code will be executed by GPU threads

grouped in a block.

Kernel here specifies portion of computational code to be

executed on NVIDIA GPU device. CUDA kernel executes

on a grid of thread blocks, where a thread block is a group

of threads that work in SIMT(Single Instruction Multiple

Thread) model. Threads of each block execute cooperates

each other using shared memory and synchronizing its

execution. Threads from different blocks operate

independently. A grid can be of 1 or 2 dimensions, and a

thread block can be of 1, 2, or 3 dimension as shown in

Fig.3. A grid can have up to 65535 blocks of threads in

each dimension and a thread block can support 768 or

1024 threads depending on GPU architecture. Each thread

on a block and a block on grid has a unique identification.

IV. MCL ALGORITHM

MCL uses two simple algebraic operations, expansion and

inflation, on the stochastic (Markov) matrix associated

with a graph. The Markov matrix M associated with a

graph G is defined by normalizing all columns of the

adjacency matrix of G. The clustering process simulates

random walks (or flow) within the graph using expansion

operations, and then strengthens the flow where it is

already strong and weakens it where it is weak using

inflation operations. By continuously alternating these two

processes, the underlying structure of the graph gradually

becomes apparent, and there is

Converges to a result with regions with strong internal

flow (clusters) separated by boundaries within which flow

is absent.

1. // G is a graph, matrix M and a real

number r > 1

2. // columns of M with power coefficient r is

written Γr(M), and Γr is called the inflation

operator with power coefficient r

3. // Γr(Mij) = Mijr / Σr,j(M)

4. add loops to G

5. set Γ to some value

6. set M_1 to be the matrix of random walks on

G

7. while (change)

8. {

9. M_2 = M_1 * M_1 # expansion

10. M_1 = Γ(M_2) # inflation

11. change = difference(M_1, M_2)

12. }

13. set CLUSTERING as the components of

M_1

CUDA MCL Algorithm

Listing (1): MCL Algorithm [12]

V. CLUSTERING RESULTS AND ANALYSIS

In Fig 4 some of the results of our clusters analysis are

shown, comparing number of clusters against cluster sizes,

for the clusters output from data sets PPI1 (Bio GRID)

Figure (4): Comparison of MCL Execution time for SpMv

using ELLAPCK-R format

Figure (5): Speedup of MCL Execution time for Sparse-

matrix using ELLAPCK-R format

 Performance Optimization of Clustering on GPU

(IJSRD/Vol. 1/Issue 4/2013/0014)

All rights reserved by www.ijsrd.com 865

Figure (6): Comparison of MCL Execution time for SpMv

matrix using ELLPACK-R format on GPU without

transfer of data

Figure (7): Comparison of MCL Execution time on CPU

and GPU using ELLPACK-R Format

VI. CONCLUSION AND FUTURE WORK

1) As it has been Clustering Algorithm giving best

performance on small data set so we will implement it

on large data set and different GPU platform and

optimize the Performance.

2) After Observation Parallel Computing is most

important mode of Performance Optimization.

3) For high Performance we will implement Many

Clustering Algorithm on Different

4) Platform of GPU and find out which platform is best

according to Application.

REFERENCES

[1] Pradeep Rai, Shubha Singh, “A Survey of Clustering

Techniques” in proceedings of the International

journal of Computer Applications (0975-8887)

Volume 7-No.12, October 2010.

[2] NVIDIA Corporation, NVIDIA Programming Guide,

Version 3.1.1,July 2010.

[3] Osama Abu Abbas, “Comparison Between Data

Clustering Algorithm” in proceedings of the

International Arab Journal of Information Technology,

Vol. 5, No. 3, July 2008.

[4] A.K. Jain, M.N. Murty, P.J. Flynn, “Data Clustering:

A Review” ACM computing Surveys, Vol. 31, No. 3,

September 1999.

[5] Wenbin Fang, Milan Lu, Xiangye Xiao, Bingsheng He,

Qiong Luo, “Frequent Itemset Mining on Graphics

Processors” in proceeding of the Fifth International

Workshop on Data management on New Hardware,

June 28, 2009.

[6] Balaji Dhanasekaran, Norman Rubin, “A new method

for GPU based Irregular Reductions and Its

Application to K-Means Clustering” in proceedings of

the International Conference on GPGPU-4, March

2011.

[7] Feng Cao, A K.H. Tung, A Zhou, “Scalable Clustering

Using Graphics Processors” School of Computing,

National University of Singapore, 2004.

[8] Ren Wu, Bin Zhang, Meichun Hsu, “Clustering

Billions of Data Points Using GPUs” UCHPC-

MAW’09, May 2009, Ischia, Italy.

[9] Wenjing Ma, Gagan Agrawal, “A Translation System

for Enabling Data Mining Applications On GPUs”,

ICS’09, June 2009, New York, USA, pp. 400-409.

[10] Hanaa M. Hussain, K Benkrid, A Erdogan, H Seker,

“Highly Parameterized K-means Clustering on FPGAs:

Comparative Results with GPPs and GPUs”, in

proceeding of the International Conference on

Reconfigurable Computing and FPGAs, IEEE 2011.

[11] Dar-Jen Chang, M Kantardzic, M Ouyang, “

Hierarchical clustering with CUDA/GPU”, UCHPC-

MAW, 2010.

[12] Alhadi Bustamam, Kevin Burrage, Nicholas A.

Hamilton, “Fast Parallel Markov Clustering in

Bioinformatics Using Massively Parallel Computing

on GPU with CUDA and ELLPACK-R Sparse

Format”, in proceeding of the IEEE/ACM

TRANSACTIONS ON COMPUTATIONAL

BIOLOGY AND BIOINFORMATICS, VOL. 9, NO.

3, MAY/JUNE 2012.

