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Abstract--In today’s digital world, Data sets are increasing 

exponentially. Statistical analysis using clustering in 

various scientific and engineering applications become 

very challenging issue for such large data set. Clustering 

on huge data set and its performance are two major factors 

demand for optimization. Parallelization is well-known 

approach to optimize performance. It has been observed 

from recent research work that GPU based parallelization 

help to achieve high degree of performance. Hence, this 

thesis focuses on optimizing hierarchical clustering 

algorithms using parallelization. It covers implementation 

of optimized algorithm on various parallel environments 

using Open MP on multi-core architecture and using 

CUDA on may-core architecture.   

I. INTRODUCTION 

Clustering is the task of grouping a set of objects in such a 

way that objects in the same group (called cluster) are 

more similar (in some sense or another) to each other than 

to those in other groups (clusters). It is a main task of 

explorative data mining, and a common technique for 

statistical data analysis used in many fields, including 

machine learning, pattern recognition, image analysis, 

information retrieval, and bioinformatics. 

A "clustering" is essentially a set of such clusters, usually 

containing all objects in the data set. Additionally, it may 

specify the relationship of the clusters to each other, for 

example a hierarchy of clusters embedded in each other. 

Clustering can be roughly distinguished in: 

1) Hard clustering: each object belongs to a cluster or 

not 

2) Soft clustering (fuzzy clustering): each object belongs 

to each cluster to a certain degree (e.g. a likelihood of 

belonging to the cluster) 

A. Classification of Clustering 

Traditionally   clustering   techniques   are   

broadly divided in [1]: 

1) Hierarchical methods 

2) Partitioning Methods 

3) Density Based Algorithms 

4) Grid Based Clustering 

B. Hierarchical Methods 

Hierarchical clustering is a method of cluster 

analysis which seeks to build a hierarchy of 

clusters. Hierarchical clustering generally falls into 

two types: 

1) Agglomerative Algorithm 

2) Division Algorithm 

In hierarchical clustering the data are not partitioned into 

a particular cluster in a single step. Instead, a series of 

partitions takes place, which may run from a single 

cluster containing all objects to n clusters each containing 

a single object. Hierarchical Clustering is subdivided into 

agglomerative methods, which proceed by series of 

fusions of the n objects into groups, and divisive 

methods, which separate n objects successively into finer 

groupings. Hierarchical clustering may be represented by 

a two dimensional diagram known as dendrogram which 

illustrates the fusions or divisions made at each 

successive stage of analysis. 

C. Partitioning Methods 

The partitioning methods generally result in a set of M 

clusters, each object belonging to one cluster. Each cluster 

may be represented by a centroid or a cluster 

representative; this is some sort of summary description of 

all the objects contained in a cluster. The precise form of 

this description will depend on the type of the object 

which is being clustered. In case where real-valued data is 

available, the arithmetic mean of the attribute vectors for 

all objects within a cluster provides an appropriate 

representative; alternative types of centroid may be 

required in other cases, e.g., a cluster of documents can be 

represented by a list of those keywords that occur in some 

minimum number of documents within a cluster. If the 

number of the clusters is large, the centroids can be 

further clustered to produces hierarchy within a dataset. 

D. Density-Based Algorithms 

Density-based algorithms are capable of discovering 

clusters of arbitrary shapes. Also this provides a natural 

protection against outliers. These algorithms group 

objects according to specific density objective functions. 

Density is usually defined as the number of objects in a 

particular neighborhood of a data objects. In these 

approaches a given cluster continues growing as long as 

the number of objects in the neighborhood exceeds some 

parameter. 

E. Grid Based Clustering 

These focus on spatial data i.e. the data that model the 

geometric structure of objects in the space, their 

relationships, properties and operations. This technique 

quantizes the data set into a no. of cells and then work with 

objects belonging to these cells. They do not relocate 

points but ratter builds several hierarchical levels of groups 

of objects. The merging of grids and consequently clusters, 

does not depend on a distance measure .It is determined by 

a predefined parameter. 

 

1) Mode of Performance Optimization 

Performance optimization is foremost objective when 

we are performing many computations on processor. 
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So following techniques are used for performance 

optimization: 

1) Efficient Resources (Devices ) 

2) Optimized computing Algorithm 

3) Best utilization of resources with less cost   

 (Parallel processing) 

This paper proposes a mechanism for High Performance 

Computing. 

II. GPU ARCHITECTURE 

GPU (Graphics Processing Unit) have been of large 

interest in last decade to achieve high performance 

computing through massive data parallelism model. GPU 

has hundreds of core processors. GPUs are designed for 

graphics. GPU is used to process similar operation on 

independent vertices & pixels in parallel.  GPU is more 

suitable for stream computations like SIMD (single 

Instruction multiple data) programming model.  For higher 

efficiency, GPU processes many data elements in parallel 

with same program module. 

Last decade, to satisfy demand of high performance 

computing a tremendous rise in computing power has been 

observed. Although CPU has been constantly increasing 

their performance, the growth has been over shadowed by 

the improvement in performance of GPU. This trend has 

led to draw the interest of researchers with high 

computational requirements to look for GPUs as a possible 

solution. This has led to the emergence of a new term 

GPGPU (General Purpose computing using Graphical 

Processing Units).  

GPGPU is defined as General Purpose computation using 

GPU and graphics API in applications other than 3D 

graphics. In order to achieve higher efficiency, GPGPU is 

designed as a combination between hardware components 

and software that allows the use of a traditional GPU 

(Graphics processor) to perform non-graphical computing 

tasks with higher processing power.  [2] 

Fig. 1 describes GPU architecture. Each GPU has number 

of Streaming Multiprocessors(SM) i.e.30 SMs and each 

streaming multiprocessor has eight streaming core 

processor.  This architecture has characteristics to perform 

same operation on collection of records (Data parallelism). 

Hence, GPU uses streaming processor as core processor to 

achieve massive data parallelism. Each NVIDIA GPU has 

a hundreds of parallel cores and within each core has 

floating point unit, logic unit (add, sub, mul), move and 

compare unit, and a branch unit.  

 

 

Figure (1): GPU Architecture [2] 

Hence, GPU uses streaming processor as core processor to 

achieve massive data parallelism. Each NVIDIA GPU has 

a hundreds of parallel cores and within each core has 

floating point unit, logic unit (add, sub, mul), move and 

compare unit, and a branch unit.  

Each core is managed by a thread manager. A thread 

manager can spawn and manage hundreds of threads per 

core. A very important feature is that it uses lightweight 

threads that have little creation overhead and zero-

overhead scheduling. The GPU is highly parallel compute 

coprocessor that has its own device memory with high 

bandwidth. 

III. CUDA 

Compute Unified Device Architecture (CUDA) is a 

Programming model and the APIs required for performing 

computation tasks on NVIDIA GPUs. CUDA is a scalable 

highly parallel and multithreaded API to execute a 

program on any number of processor without recompiling. 

CUDA allow a program written for a platform to be 

executed in other platform without recompilation. CUDA 

provides efficient programming environment for regular 

applications.  CUDA is designed to support many 

programming languages as shown in Fig.2. It provides 

extension to programming languages for performing 

computation on NVIDIA GPUs. CUDA C is extension to 

C language with CUDA API to operate on NVIDIA GPU. 

It allows a programmer to write a program for one thread, 

and it instantiate for multiple parallel threads. 

 
Figure (2): CUDA Interface [2] 

A. CUDA Programming Execution   model 

 
Figure (3): CUDA execution model [2] 

Programming model provided for designing and executing 

general purpose computation kernel on NVIDIA GPU is 

named as Compute Unified Device Architecture 

(CUDA).CUDA programming modal is available for most 

known operating systems Windows, and Linux. CUDA 

programming modal allows programmer to use GPU for 

parallel programming without knowledge of graphics. 

Fig.3 describes CUDA computational model to be 
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executed on CPU and GPU both. A CUDA program is 

sequential host program and one or many kernel code as 

shown in Fig.3.Serial code will be executed by a CPU 

thread, and Kernel code will be executed by GPU threads 

grouped in a block.    

Kernel here specifies portion of computational code to be 

executed on NVIDIA GPU device. CUDA kernel executes 

on  a grid of thread blocks, where a thread block is a group 

of threads that work in SIMT(Single Instruction Multiple 

Thread) model. Threads of each block execute cooperates 

each other using shared memory and synchronizing its 

execution. Threads from different blocks   operate 

independently. A grid can be of 1 or 2 dimensions, and a 

thread block can be of 1, 2, or 3 dimension as shown in 

Fig.3.  A grid can have up to 65535 blocks of threads in 

each dimension and a thread block can support 768 or 

1024 threads depending on GPU architecture.  Each thread 

on a block and a block on grid has a unique identification. 

IV. MCL ALGORITHM 

MCL uses two simple algebraic operations, expansion and 

inflation, on the stochastic (Markov) matrix associated 

with a graph. The Markov matrix M associated with a 

graph G is defined by normalizing all columns of the 

adjacency matrix of G. The clustering process simulates 

random walks (or flow) within the graph using expansion 

operations, and then strengthens the flow where it is 

already strong and weakens it where it is weak using 

inflation operations. By continuously alternating these two 

processes, the underlying structure of the graph gradually 

becomes apparent, and there is  

Converges to a result with regions with strong internal 

flow (clusters) separated by boundaries within which flow 

is absent. 

1. //  G is a graph, matrix M and a real  

number r > 1 

2. // columns of M with power coefficient r is 

written Γr(M), and Γr is called the inflation  

operator with power coefficient r 

3. // Γr(Mij) = Mijr / Σr,j(M) 

4.    add loops to G                                 

5.    set Γ to some value                         

6.    set M_1 to be the matrix of random walks   on 

G 

7.    while (change) 

8.  { 

9.       M_2 =  M_1 * M_1                #  expansion   

10.       M_1 =  Γ(M_2)                       #  inflation 

11.       change   =  difference(M_1, M_2) 

12.    } 

13.    set CLUSTERING as the components of      

M_1     

CUDA MCL Algorithm 

 

Listing (1): MCL Algorithm [12] 

V. CLUSTERING RESULTS AND ANALYSIS 

In Fig 4 some of the results of our clusters analysis are 

shown, comparing number of clusters against cluster sizes, 

for the clusters output from data sets PPI1 (Bio GRID) 

 

 
Figure (4): Comparison of MCL Execution time for SpMv 

using ELLAPCK-R format 

 
Figure (5): Speedup of MCL Execution time for Sparse- 

matrix using ELLAPCK-R format 
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Figure (6): Comparison of MCL Execution time for SpMv 

matrix using ELLPACK-R format on GPU without 

transfer of data 

 
Figure (7): Comparison of MCL Execution time on CPU 

and GPU using ELLPACK-R Format 

VI. CONCLUSION AND FUTURE WORK 

1) As it has been Clustering Algorithm giving best 

performance on small data set so we will implement it 

on large data set and different GPU platform and 

optimize the Performance. 

2) After Observation Parallel Computing is most 

important mode of Performance Optimization. 

3) For high Performance we will implement Many 

Clustering Algorithm on Different  

4) Platform of GPU and find out which platform is best 

according to Application.  
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