Abstract— ‘‘THE SMALLER WE ARE, the better we perform.’’ That is the siren song of quantum transistors, in which electrons skip on and off quantum dots or tunnel through barriers thought impenetrable in the world of classical physics.

Nothing stands between these devices and ever-increasing density and performance. Manufacturing processes keep on shrinking their feature sizes, even down to atomic-scale dimensions, and switching frequencies approaching a terahertz are foreseeable because only a handful of electrons is needed to operate the devices.

I. INTRODUCTION

So great is the allure of quantum devices that several types are under development. One variant is the double–electron-layer tunneling transistor (Deltt) built by researchers at Sandia National Laboratories, in Albuquerque, N.M. Another avenue is to boost the performance of conventional transistors by teaming them with resonant tunnel diodes, quantum devices similar to the Deltts. So far, most resonant tunneling devices (both Deltts and diodes) have utilized indium phosphide or gallium arsenide processes. But engineers are busy another sort of quantum device shows great promise for nonvolatile memory. Called the single electron transistor, or sometimes the quantum dot transistor, it is under development by research groups worldwide. A single-electron memory cell—the nanocrystal device pioneered by Sandip Tiwari, now at Cornell University, Ithaca, N.Y.—is of silicon, operates at room temperature, and should prove to have faster read and write times than conventional nonvolatile memories. Quantum cellular automata are a fourth type of device. Automata are cells that contain four quantum dots arranged in a square. An extra electron e sides on each dot of one diagonal or the other, determining if the cell stores logic 1 or a 0. The cells perform the necessary logic functions by interacting with neighboring cells. The dots can be metal but arrangements of molecules are also possible.

Quantum cellular automata are a fourth type of device. Automata are cells that contain four quantum dots arranged in a square. An extra electron resides on each dot of one diagonal or the other, determining if the cell stores a logic 1 or a 0. The cells perform the necessary logic functions by inter-acting with neighboring cells. The dots can be metal but arrangements of molecules are also possible.

Though quantum transistors are a novelty today, they will be needed once the classical field-effect transistor (FET) can be made no smaller—an event even now on engineers’ radar screens. —Already in research labs around the world the last generation of bulk CMOS is being explored,” wrote Hon-Sum Philip Wong in the April 1999 Proceedings of the IEEE.

What will eventually stop CMOS technology in its tracks is not the inability to shrink its physical size further, but the dire effect of quantum phenomena on the ever-tinier transistor’s operation. In Nano scale FETs, tunneling through ultrathin oxides and extremely narrow channels leaks an unacceptable amount of current. And the minuscule number of dopant atoms in the channel varies enough from one transistor to the next to wreak unavoidable havoc with operating margins [see –The incredible shrinking transistor,” Yuan Taur, IEEE Spectrum, July 1999, pp. 25–29].

—Currently we are hoping that we can get down to 20- or 30-nm channel lengths. But below that it looks very difficult to continue with CMOS,” Wong’s co-author, David J. Frank, told Spectrum recently. Frank is a research staff member at IBM Corp.’s Thomas J. Watson Research Center, in Yorktown Heights, N.Y.

Bluetooth was named for the 10th Century Viking king, Harald Blatand A.K.A., Bluetooth) who peacefully united all the tiny island kingdoms of Denmark, southern Sweden, and southern Norway into one country . In keeping with its namesake, Bluetooth, the new low-cost radio technology, is designed to unite or connect all different types of devices to effectively work as one.

II. TYPES OF QUANTUM TRANSISTORS

1) Double electron layer tunneling transistor (Deltt)
2) So resonant tunneling diodes (RTDs)
3) single-electron transistor

A. ELECTRONS IN A WELL

Perhaps the most striking quantum effect in transistor-like devices is tunneling. The term alludes to a particle plunging through a barrier that would be impenetrable in the classical world. The mechanism is basic to the Deltt being developed at Sandia.

Though Deltt developers are still in the early stages of exploration, they are pinning their hopes for high speed on performance already obtained with devices that are similar except in having two terminals rather than three. Called resonant tunnel diodes, they have been shown to oscillate at frequencies up to 700 GHz.

Further, Deltts lend themselves to volume manufacturing. They are built with a planar process, using conventional semiconductor deposition. As deposition can be controlled to within a few tenths of a nanometer, it is more than adequate for all structures with dimensions critical to Deltt operation.

Structurally, the Deltt positions an insulating barrier between two two-dimensional wells. In operation, electrons
quantum-mechanically tunnel from one well to the other through the barrier [Fig. 1]. Device speed benefits from the tunneling process, which is much faster than the drift of electrons, let alone of slower holes, across a channel. Sandia researchers label the two wells as source and drain, to correspond with conventional transistors.

A well is formed by surrounding one region holding a bevy of free-electron energy states with another region having a dearth of them. An example might be an insulator or a wide band gap semiconductor, say, surrounding a metal or narrow-band gap semi-conductor. The well is deemed two-dimensional when it is so narrow in one dimension that electron motion is restricted to the plane of the well. The dimensions of the well and the height of the barrier (defined as the energy an electron needs to pass over it) determine the discrete energy states allowed to the electrons in the well. An electron can tunnel through the barrier only if its energy and its momentum in the plane of the well are both conserved. In other words, an electron can tunnel only if the energy state of the quantum well on the other side of the barrier is equal in energy and momentum to the state the electron originally occupied.

In general, when no voltage is applied to the device, there are no matching states in the two wells, and the device is off. But when the energy level of the electrons in one well is shifted appropriately, the energy states line up opposite each other and tunneling occurs—a condition known as resonance. Applying voltage to a control gate or biasing one of the wells relative to the other will shift the energies. In practice, both voltages are applied in operating the Deltt.

B. THE BIG DIFFERENCE

In one way, the Deltt’s operation is like the switching of an ordinary transistor: at a certain source-drain bias voltage, the device can be switched on or off by applying a voltage to the gate. But there is one important difference. Raise the gate or drain voltage on a conventional transistor, and current increases. But in a Deltt, raising the voltage beyond the point of resonance shuts off the current. Put another way, the differential resistance—the change in voltage with respect to a change in current—can become negative. This feature allows complementary circuits to be built with only one type of transistor, rather than the n- and p-type transistors required for CMOS circuits. –It’s a unipolar device—the only carriers are electrons. But because the trans-conductance can take either sign, depending on the control gate volt-age, I can make complementary circuits,” explained Jerry Simmons, who developed the Deltt. He is Sandia’s manager of the semi-conductor material and device sciences department.

“—That is the exciting thing about these devices,” he said, “—They are multifunctional, which means that you can perform the same circuit functions with fewer devices.” As an example, the Sandia researchers built a static RAM cell using two Deltts in series [Fig. 3]. A conventional CMOS static RAM cell requires n- and p-type transistors, complicating fabrication.

Scandia’s Deltt still has a way to go. For one thing, the milli-volt levels at which it operates not only are hard to integrate with the 1-V level of today’s electronics but also mean susceptibility to noise. —The final thing,” said Simmons, —is that the speed is limited by the Deltt’s RC time constant.” It is easy to shrink the resistance by using a very thin barrier, but then the two wells are so close that the capacitance is large.

C. TWO-TERMINAL COUSINS

Although they are not strictly transistors because they lack a third terminal, RTDs are nevertheless finding a role teaming up with ordinary transistors to improve performance of conventional circuits.

In RTDs, electrons tunnel through two barriers separated by a well as they pass from an input source to output drain (These devices differ from Esaki tunnel diodes, which are formed by adjacent regions of heavily doped n- and p-type semiconductor but have no energy well. Instead, electrons tunnel from a state in the conduction band of the n region to an empty state of equal energy in the valence band of the p region.)

Because the RTD well is narrow, the energy levels allowed to electrons are quantized and widely spaced. Typically only one quantized state in the well has any bearing on device operation. When a voltage is applied between the source and drain, current starts to flow and reaches a maximum at resonance, when the applied volt-age raises the energy of the electrons in the source to line up with the well’s quantized state. Once that point is passed, current drops so like the Deltts, RTDs display a negative differential resistance.

For this reason —You can put them back to back and they latch,” said Paul Berger, associate professor of electrical engineering at Ohio State University, Columbus. —You can make a static RAM cell with two back-to-back RTDs and one transistor. It is a lot smaller and reduces power consumption.”

In an invited paper at the 1998 International Electron Device Meeting, Alan Seabaugh, professor of electrical engineering at the University of Notre Dame, Ind., and a pioneer of RTD technology, explained the advantages of combining RTDs with conventional transistors to build circuits. They were due, he said, to —the high speed of the tunnel diode compared to the transistor, and the reduced component count of the tunnel-diode/transistor circuit compared to the transistor circuit.”

For example, if a comparator circuit incorporates RTDs, the number of components is reduced by a factor of six and the area by a factor of four, compared with a circuit built with high–electron-mobility transistors (HEMTs), one of today’s fastest devices.

Efforts to develop RTD-based circuits began about 10 years ago at Texas Instruments Inc., Dallas, and moved to Raytheon Systems Co., also in Dallas, when Raytheon purchased Texas Instruments’ defense business in 1997. The company is now using RTD-based circuits internally and plans to sample parts to the U.S. Department of Defense and other parties within two years, according to Gary Frazier, manager of the Nano electronics group at Raytheon.

D. ONE ELECTRON AT A TIME

The basic building block of the single-electron transistor is a Small Island of conducting material, sometimes called a quantum dot. When the island is small enough, the energy needed to land an electron on it or take one from it depends on how large it is and how many electrons are already on it.
For room temperature operation an island as small as 1–3
nm is needed.
A simple way to get electrons on and off the island is to add
an electron source separated from the island by a thin oxide
through which electrons can tunnel. A gate over the island
changes its energy state, determining the conditions under
which electrons tunnel. The result is a structure called a
single-electron box.
Applying a gate voltage polarizes the island. At first, as the
voltage is increased from zero, an electron in the source
lacks enough energy to charge the island. This Coulomb
blockade, as it is called, is the basis of all single electron
transistors. But the greater the voltage, the greater the
polarization charge becomes, until it equals one electronic
charge, whereupon the energy conditions favor the tunneling
of one electron to the island from the source electrode
Such a device can be turned into a transistor,” explained
Konstantin Likharev, professor of physics at the University
of New York, Stony Brook. One possibility is to replace the
channel of an FET by an island and separate it from the
source and drain by tunneling barriers [Fig. 5, second from
bottom]. As the source–drain voltage is raised, no current
flows until a threshold volt-age—high enough to overcome
the Coulomb blockade—is reached.
Typically, though, the devices work below the threshold
volt-age. In this region, the gate voltage controls the source–
drain cur-rent. The gate applies a potential to the island and
the proper polarity of this potential makes it energetically
advantageous for electrons to enter the island,” explained
Likharev. “So changes the Coulomb blockade threshold.”
As the gate voltage is increased, the blockade threshold volt-
age drops, and the source-drain current grows until the
blockade threshold voltage equals zero. But when the gate
voltage is increased beyond this point, the blockade voltage
rises again and the current drops.
In other words, the single-electron transistor oscillates
between regions of positive and negative trans conductance.
The advantage is that, like the resonant devices, only one
type of device is needed to make a complementary logic
gate. You bias one transistor so that its trans conductance is
positive and the other so that it is negative, and you get a
good analog to CMOS,” said Likharev.
Likharev believes that their nanometer dimensions suit
single-electron transistors to memory—and possibly some
switching applications that he is developing. But they are
not suitable for logic. “Because of the small trans-
conductance, it takes a long time to charge up long
interconnects,” he said. Background charge is also a
problem. The sensitive transistor is affected by even a single
charged impurity, which occurs often in dielectric materials.
A second important type of single-electron device places the
island between the gate and the channel of a field-effect
transistor, divided from each by an insulator. The channel
becomes the island’s electron source, and the transistor gate
does double duty as the gate electrode for the island. The
combination of the charge stored on the island with the
source–drain and gate voltages determines the current
through the channel. These devices are so like electrically
erasable programmable ROM cells—or flash cells—as to be
a natural for non-volatile memory.
In practice, however, fabricating a single nanometer-scale
dot and lining it up with a transistor channel is not easy. So
some scientists are taking a scatter-shot approach. They have
developed techniques for creating many small dots in the
oxide layer between the gate and the channel.
At the Thomas J. Watson Research Center and more
recently at Cornell, Sandip Tiwari and his colleagues have
formed dots from nanocrystals a few nanometers in
diameter, using a chemical vapor deposition process derived
from conventional fabrication. The difference, according to
Tiwari, a professor of electrical engineering and director of
the Cornell Nanofabrication Facility, is that by contrast with
the formation of continuous floating gates of conventional
flash cells, you don’t allow the grains to coalesce into a
continuous film and you allow enough time for the silicon
grains to reach a stable state.”
The nanocrystal approach has the added benefit of
minimizing the effects of so-called interface states—lattice
discontinuities that form on the boundaries between the
nanocrystal or the gate and the oxide, and that can trap
charge. Even with inter-face-state densities of mid-1010 or
1011/cm2,” said Tiwari, “their effects are overpowered by
the fact that there are sufficient nanocrystals around—
typically 40 or 50 or more—and with more than one
electron stored on them. The effect of those interface states
becomes very small.”

Another advantage of the Nano crystal structure is that the
oxides holding the dots can be much thinner than in
conventional flash devices. Just one defect in the continuous
floating gate of a conventional flash cell will let electrons
escape to the gate or to the overlap regions of the source and
drain, Tiwari explained. But a Nano crystalline defect is far
from disastrous, for even if the charge on one Nano crystal
escapes, charge still exists on all the other nanocrystal. The
thinner oxides pay off in write speeds that are faster and
voltages that are lower than those of flash cells.

III. FIGURES
IV. CONCLUSION

"Instead, One-of-a-kind devices of many quantum-transistor varieties have been built and operated. Most need a lot of work before they become practical, particularly for room temperature operation. But even if all the wrinkles are ironed, will the industry take notice?

—CMOS has to reach its limits” in the opinion of IBM’s Frank” before resources and interest will be sufficient to push some other technology far enough to reach some of those application spaces. It’s very hard to hit a moving target.”

AKNOWLEDGMENT

We are thankful to all mighty god and our parents and all other who helped us in this project.

REFERENCES

[5] Konstantin Likharev, professor of physics at the University of New York, Stony Brook