Case Study and Analysis of Impulse Voltage and its Effect on Transformer Windings

Rahil Modi¹ Meetkumar Talajia² Mixip Patel³ Rajkumar Savaliya⁴ Prof. Supriya Sinha⁵
¹,²,³,⁴ Student ⁵ Assistant Professor
¹,²,³,⁴,⁵ Department of Electrical Engineering
¹,²,³,⁴,⁵ SAL Institute of Technology and Engineering Research, Ahmedabad, Gujarat, India

Abstract— In this work, a comparative study on the variation of maximum voltage to ground and voltage across the coils under different impulse voltages indicated that non-standard impulse voltage waveform develops higher voltage stress in the windings. They draw high risk and are critical to transformer insulation system. [1] Described method can be used by transformer manufactures to estimate voltage wave forms during switching or lightning, and to proves useful information for insulation coordination studies. [2].

Key words: Transformer, Impulse Voltage, Oscillation, Circuit Breaker, Lightning

I. INTRODUCTION

Transformers are an integral part of transmission and distribution networks. When transformer windings are excited by impulse voltages, high amplitude oscillatory voltage stresses induced in the transformer insulation between the winding and the ground and across the windings. [1] The severity of insulation degradation depends on steepness of the wave, instant of chopping, time to collapse, frequency oscillations, overshoot near the peak etc. [2] the positive and negative polarity of oscillating waveforms affects the insulation breakdown in power equipment. High frequency overvoltage is often produced by the re-strikes and pre-strikes during the opening or closing of a switching device like the circuit breakers. Voltage oscillations which proceed toward windings are continuously superposed by new voltage waves from new upcoming surges. Hence, voltage waveforms along the transformer winding within a particular time interval can have very different amplitude and rate of rise. Their oscillations contain a broad frequency range which can be from a few kilohertz up to a few megahertz. [3] These are unwanted phenomena which cause deterioration and failure of the equipment insulation. Sometimes high inter-turn overvoltage can take place which stress the thin insulation and accelerate its failure. The lightning impulse voltages of transformer tests with physically given inductances and capacities shows impulse shapes with superimposed oscillations or overshoots. [4] The distribution of these transient over voltages in transformer winding is highly non-uniform. It has been observed that 60 Percent of these voltages appear across first 10 percent length of the winding. This non-uniform voltage distribution can damage the transformer insulation. This work deals with the voltage distribution in the transformer winding when its terminal is excited with impulse voltage. Distribution of the impulse voltage along the winding depends on the winding capacitive network that is consisting of parallel and series capacitances.

Capacitors between winding turns are known as series and capacitors between turns and core are known as parallel capacitors. [1]

A. Inductance and Capacitance

Inductances are calculated by the well-known Maxwell formulas on a turn-to-turn basis. The L matrix is formed in a way that diagonal elements of the matrix correspond to a group of turns. [2]

![Inductors and capacitors](image.jpg)

Fig. 1: Inductors and capacitors

The off-diagonal elements are mutual inductances between different groups of turns. For simplicity in this case, the number of turns in a group is kept constant. The studied transformer has 10 layers with approximately 142 turns per layer. Each layer is divided in 10 groups with 14 turns per group. So, we assume that a layer consists of 10 groups. So, the transformer L matrix is of order 100x100. The capacitance matrix is built on a node-to-node basis and because the number of nodes N=B+1
where B is the number of branches represented by inductances, the capacitance matrix is of order 101×101. By making use of the inductance matrix \mathbf{L} and the capacitance matrix \mathbf{C}, impedance and admittance matrices \mathbf{Z} and \mathbf{Y} are determined, [2]

II. IMPULSE VOLTAGE WAVEFORMS

In this study, the transformer windings sections are subjected to six different waveforms including standard and non-standard lightning impulse voltage waveforms. The applied impulse voltage waveforms are generated in MATLAB [1].

A. Full Lightning Impulse Voltage Waveform

As per IEC 60060-a, a full standard lightning impulse voltage rises to its peak value in 1.2 μs and the tail of the wave decays to a level of 50 percent of the peak in 50 μs.

$$
\mathbf{Z} = \left(j\omega + \frac{2\omega}{\sigma \mu_0 d^2} \right) \mathbf{L}
$$

$$
\mathbf{Y} = (j\omega + \omega \tan \delta) \mathbf{C}
$$

Where,
- d - is the distance between layers,
- σ - is the conductor conductivity,
- $\tan \delta$ - is the loss tangent of the insulation

B. Chopped Lightning Impulse Voltage

A chopped wave is developed during flashover. The standard lightning impulse voltage waveform can be chopped on the tail, peak or front. The crest value of the standard tail chopped wave is 10% greater than that of full impulse wave and chopped at 2-6 μs [1]. Such impulse has a rapid voltage collapse on the tail with a small portion of negative overshoot. In this work, impulses with chopping time 3μs, 8μs and 15μs on tails are used to investigate the voltage distribution on the windings. The tail chopped impulse at 8μs and 15μs represent the non-standard chopped impulses [1].
C. Non-Standard Single-Pulse Impulse Voltage Waveform

Single pulse non-standard impulse voltage waveform has been used in this work to study the winding response against non-standard lightning impulse waveforms without oscillations. [1] These impulses have a steeper wave front and short, non-oscillating tail compared to the standard lightning impulse waveform. The wave shape of a typical single pulse impulse voltage waveform is shown in the figure 7. The wave front time of the impulse is 0.8\(\mu\)s.

D. Non-Standard Damped Oscillating Impulse Voltage Waveform

Oscillations can occur in impulse waveforms due to series and parallel resonance. The wave shape of a typical damped oscillating impulse waveform is shown in figure 8. The voltage rise time is 1.9\(\mu\)s.

III. Conclusion

In this work, the standard and non-standard impulse voltages along with different chopping times, non-oscillating single pulsed wave and non-standard sampled oscillating impulse voltage were studied using and simulated transformer model. The
simulations are performed using MATLAB Simulink. Test result showed that non-standard impulse voltage waveforms develop high voltage stress posing highest risk to the equipment’s insulation.

REFERENCES